{"title":"优化虚拟桌面云热迁移","authors":"Changyeon Jo, Bernhard Egger","doi":"10.1109/CloudCom.2013.21","DOIUrl":null,"url":null,"abstract":"Live migration of virtual machines (VM) from one physical host to another is a key enabler for virtual desktop clouds (VDC). The prevalent algorithm, pre-copy, suffers from long migration times and a high data transfer volume for non-idle VMs which hinders effective use of live migration in VDC environments. In this paper, we present an optimization to the pre-copy method which is able to cut the total migration time in half. The key idea is to load memory pages duplicated on non-volatile storage directly and in parallel from the attached storage device. To keep the downtime short, outstanding data is fetched by a background process after the VM has been restarted on the target host. The proposed method has been implemented in the Xen hyper visor. A thorough performance analysis of the technique demonstrates that the proposed method significantly improves the performance of live migration: the total migration time is reduced up to 90% for certain benchmarks and by 50% on average at an equal or shorter downtime of the migrated VM with no or only minimal side-effects on co-located VMs.","PeriodicalId":198053,"journal":{"name":"2013 IEEE 5th International Conference on Cloud Computing Technology and Science","volume":"372 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Optimizing Live Migration for Virtual Desktop Clouds\",\"authors\":\"Changyeon Jo, Bernhard Egger\",\"doi\":\"10.1109/CloudCom.2013.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Live migration of virtual machines (VM) from one physical host to another is a key enabler for virtual desktop clouds (VDC). The prevalent algorithm, pre-copy, suffers from long migration times and a high data transfer volume for non-idle VMs which hinders effective use of live migration in VDC environments. In this paper, we present an optimization to the pre-copy method which is able to cut the total migration time in half. The key idea is to load memory pages duplicated on non-volatile storage directly and in parallel from the attached storage device. To keep the downtime short, outstanding data is fetched by a background process after the VM has been restarted on the target host. The proposed method has been implemented in the Xen hyper visor. A thorough performance analysis of the technique demonstrates that the proposed method significantly improves the performance of live migration: the total migration time is reduced up to 90% for certain benchmarks and by 50% on average at an equal or shorter downtime of the migrated VM with no or only minimal side-effects on co-located VMs.\",\"PeriodicalId\":198053,\"journal\":{\"name\":\"2013 IEEE 5th International Conference on Cloud Computing Technology and Science\",\"volume\":\"372 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 5th International Conference on Cloud Computing Technology and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudCom.2013.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 5th International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2013.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Live Migration for Virtual Desktop Clouds
Live migration of virtual machines (VM) from one physical host to another is a key enabler for virtual desktop clouds (VDC). The prevalent algorithm, pre-copy, suffers from long migration times and a high data transfer volume for non-idle VMs which hinders effective use of live migration in VDC environments. In this paper, we present an optimization to the pre-copy method which is able to cut the total migration time in half. The key idea is to load memory pages duplicated on non-volatile storage directly and in parallel from the attached storage device. To keep the downtime short, outstanding data is fetched by a background process after the VM has been restarted on the target host. The proposed method has been implemented in the Xen hyper visor. A thorough performance analysis of the technique demonstrates that the proposed method significantly improves the performance of live migration: the total migration time is reduced up to 90% for certain benchmarks and by 50% on average at an equal or shorter downtime of the migrated VM with no or only minimal side-effects on co-located VMs.