用于高速IM/DD均衡的超高可调性硅光子集成储层计算处理器

Aolong Sun, An Yan, Penghao Luo, Junwen Zhang, Nan Chi
{"title":"用于高速IM/DD均衡的超高可调性硅光子集成储层计算处理器","authors":"Aolong Sun, An Yan, Penghao Luo, Junwen Zhang, Nan Chi","doi":"10.1109/OGC55558.2022.10051045","DOIUrl":null,"url":null,"abstract":"Intensity modulation and direct detection (IM/DD) technology still dominates the optical fiber communication region for the sake of cost and energy efficiency. Reservoir Computing (RC), a special machine learning algorithm suitable for sequence models, has recently been applied to reduce the inter-symbol interference (ISI) caused by dispersion and Kerr nonlinearity in IM/DD systems. In this paper, we designed and numerically simulated a Photonic Integrated Reservoir Computing Processor (PIRCP) with two recurrent nodes using a standard silicon-on-insulator platform. The PIRCP exhibits ultra-high tunability of phase, intensity, delay time and detuning frequency of the optical carrier, which greatly facilitates parameter sweeping for the obtaining of the optimal processing performance. To validate the efficiency of our design, we implemented the PIRCP along with a Feed Forward Equalizer (FFE) in the receiver-end, and finally achieved sub HD-FEC performance for 112 Gbps/λ transmission over 60 km standard single-mode fiber (SSMF) with an ROP of -15 dBm, showing an improvement of 5 dBm compared with non-RC scheme.","PeriodicalId":177155,"journal":{"name":"2022 IEEE 7th Optoelectronics Global Conference (OGC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon Photonic Integrated Reservoir Computing Processor with Ultra-high Tunability for High-speed IM/DD Equalization\",\"authors\":\"Aolong Sun, An Yan, Penghao Luo, Junwen Zhang, Nan Chi\",\"doi\":\"10.1109/OGC55558.2022.10051045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intensity modulation and direct detection (IM/DD) technology still dominates the optical fiber communication region for the sake of cost and energy efficiency. Reservoir Computing (RC), a special machine learning algorithm suitable for sequence models, has recently been applied to reduce the inter-symbol interference (ISI) caused by dispersion and Kerr nonlinearity in IM/DD systems. In this paper, we designed and numerically simulated a Photonic Integrated Reservoir Computing Processor (PIRCP) with two recurrent nodes using a standard silicon-on-insulator platform. The PIRCP exhibits ultra-high tunability of phase, intensity, delay time and detuning frequency of the optical carrier, which greatly facilitates parameter sweeping for the obtaining of the optimal processing performance. To validate the efficiency of our design, we implemented the PIRCP along with a Feed Forward Equalizer (FFE) in the receiver-end, and finally achieved sub HD-FEC performance for 112 Gbps/λ transmission over 60 km standard single-mode fiber (SSMF) with an ROP of -15 dBm, showing an improvement of 5 dBm compared with non-RC scheme.\",\"PeriodicalId\":177155,\"journal\":{\"name\":\"2022 IEEE 7th Optoelectronics Global Conference (OGC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 7th Optoelectronics Global Conference (OGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OGC55558.2022.10051045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 7th Optoelectronics Global Conference (OGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OGC55558.2022.10051045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

出于成本和能源效率的考虑,强度调制和直接检测(IM/DD)技术仍然主导着光纤通信领域。水库计算(RC)是一种适用于序列模型的特殊机器学习算法,近年来被用于减少IM/DD系统中由色散和克尔非线性引起的符号间干扰(ISI)。本文采用标准的绝缘体上硅平台,设计并数值模拟了具有两个循环节点的光子集成储层计算处理器(PIRCP)。PIRCP对光载波的相位、强度、延迟时间和失谐频率具有超高的可调性,这极大地促进了参数扫描,从而获得最佳的处理性能。为了验证我们设计的效率,我们在接收端实现了PIRCP和前馈均衡器(FFE),最终在60公里标准单模光纤(SSMF)上实现了112 Gbps/λ传输的亚HD-FEC性能,ROP为-15 dBm,与非rc方案相比提高了5 dBm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silicon Photonic Integrated Reservoir Computing Processor with Ultra-high Tunability for High-speed IM/DD Equalization
Intensity modulation and direct detection (IM/DD) technology still dominates the optical fiber communication region for the sake of cost and energy efficiency. Reservoir Computing (RC), a special machine learning algorithm suitable for sequence models, has recently been applied to reduce the inter-symbol interference (ISI) caused by dispersion and Kerr nonlinearity in IM/DD systems. In this paper, we designed and numerically simulated a Photonic Integrated Reservoir Computing Processor (PIRCP) with two recurrent nodes using a standard silicon-on-insulator platform. The PIRCP exhibits ultra-high tunability of phase, intensity, delay time and detuning frequency of the optical carrier, which greatly facilitates parameter sweeping for the obtaining of the optimal processing performance. To validate the efficiency of our design, we implemented the PIRCP along with a Feed Forward Equalizer (FFE) in the receiver-end, and finally achieved sub HD-FEC performance for 112 Gbps/λ transmission over 60 km standard single-mode fiber (SSMF) with an ROP of -15 dBm, showing an improvement of 5 dBm compared with non-RC scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Resolution Microwave Frequency Measurement Based on Optical Frequency Comb and Image Rejection Photonics Channelized Receiver Characterization of Various Bound State Solitons Using Linear Optical Sampling Technique Modeling and Analysis of Zinc Diffusion Effect within InP-Based Mach-Zehnder Modulators Self-Supervised Denoising of single OCT image with Self2Self-OCT Network ErYb Co-doped Double-clad Fiber Amplifiers with Average Gain of 29dB by High Concentration Doping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1