使用深度学习的零售销售预测:系统文献综述

L. Eglite, I. Birzniece
{"title":"使用深度学习的零售销售预测:系统文献综述","authors":"L. Eglite, I. Birzniece","doi":"10.7250/csimq.2022-30.03","DOIUrl":null,"url":null,"abstract":"This systematic literature review examines the deep learning (DL) models for retail sales forecast. The accuracy of a retail sales forecast is a prevalent force for uninterrupted business operations. Accuracy for retailers means limiting supply chain and storage costs, ensuring no product is out of stock, and facilitating smooth promotional operations. The study analyses the DL frameworks used in reviewed literature. Tested DL models are listed, as well as other machine learning and linear models used for the evaluation comparison. Additionally, the review presents the metrics used by the authors for the model evaluation. This article concludes by describing the benefits and limitations of DL models for sales forecasting.","PeriodicalId":416219,"journal":{"name":"Complex Syst. Informatics Model. Q.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Retail Sales Forecasting Using Deep Learning: Systematic Literature Review\",\"authors\":\"L. Eglite, I. Birzniece\",\"doi\":\"10.7250/csimq.2022-30.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This systematic literature review examines the deep learning (DL) models for retail sales forecast. The accuracy of a retail sales forecast is a prevalent force for uninterrupted business operations. Accuracy for retailers means limiting supply chain and storage costs, ensuring no product is out of stock, and facilitating smooth promotional operations. The study analyses the DL frameworks used in reviewed literature. Tested DL models are listed, as well as other machine learning and linear models used for the evaluation comparison. Additionally, the review presents the metrics used by the authors for the model evaluation. This article concludes by describing the benefits and limitations of DL models for sales forecasting.\",\"PeriodicalId\":416219,\"journal\":{\"name\":\"Complex Syst. Informatics Model. Q.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Syst. Informatics Model. Q.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7250/csimq.2022-30.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Syst. Informatics Model. Q.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7250/csimq.2022-30.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这篇系统的文献综述探讨了零售销售预测的深度学习(DL)模型。零售销售预测的准确性是企业不间断经营的重要因素。零售商的准确性意味着限制供应链和存储成本,确保没有产品缺货,并促进顺利的促销操作。本研究分析了文献综述中使用的深度学习框架。列出了经过测试的深度学习模型,以及用于评估比较的其他机器学习和线性模型。此外,综述还介绍了作者用于模型评估的度量标准。本文最后描述了深度学习模型用于销售预测的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retail Sales Forecasting Using Deep Learning: Systematic Literature Review
This systematic literature review examines the deep learning (DL) models for retail sales forecast. The accuracy of a retail sales forecast is a prevalent force for uninterrupted business operations. Accuracy for retailers means limiting supply chain and storage costs, ensuring no product is out of stock, and facilitating smooth promotional operations. The study analyses the DL frameworks used in reviewed literature. Tested DL models are listed, as well as other machine learning and linear models used for the evaluation comparison. Additionally, the review presents the metrics used by the authors for the model evaluation. This article concludes by describing the benefits and limitations of DL models for sales forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering and Assessing Enterprise Architecture Debts Towards an E-Government Enterprise Architecture Framework for Developing Economies Trustworthiness Requirements in Information Systems Design: Lessons Learned from the Blockchain Community Business-IT Alignment: A Discussion on Enterprise Architecture and Blockchains. Editorial Introduction to Issue 35 of CSIMQ Supporting Information System Integration Decisions in the Post-Merger Context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1