生产函数的计量估计及其应用

Awoingo Adonijah Maxwell, I. D. Essi
{"title":"生产函数的计量估计及其应用","authors":"Awoingo Adonijah Maxwell, I. D. Essi","doi":"10.32861/AJAMS.56.57.61","DOIUrl":null,"url":null,"abstract":"This study focuses on Monte Carlo Methods in parameter estimation of production function. The ordinary least square (OLS) method is used to estimate the unknown parameters. The Monte Carlo simulation methods are used for the data generating process. The Cobb-Douglas production model with multiplicative error term is fitted to the data generated. From tables 1.1 to 1.3, the mean square error (MSE) of 1 are 0.007678, 0.001972 and 0.001253 respectively for sample sizes 20, 40 and 80. Our finding showed that the mean square error (MSE) value varies with the sum of the powers of the input variables.","PeriodicalId":375032,"journal":{"name":"Academic Journal of Applied Mathematical Sciences","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Econometric Estimation of Production Function with Applications\",\"authors\":\"Awoingo Adonijah Maxwell, I. D. Essi\",\"doi\":\"10.32861/AJAMS.56.57.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on Monte Carlo Methods in parameter estimation of production function. The ordinary least square (OLS) method is used to estimate the unknown parameters. The Monte Carlo simulation methods are used for the data generating process. The Cobb-Douglas production model with multiplicative error term is fitted to the data generated. From tables 1.1 to 1.3, the mean square error (MSE) of 1 are 0.007678, 0.001972 and 0.001253 respectively for sample sizes 20, 40 and 80. Our finding showed that the mean square error (MSE) value varies with the sum of the powers of the input variables.\",\"PeriodicalId\":375032,\"journal\":{\"name\":\"Academic Journal of Applied Mathematical Sciences\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Applied Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32861/AJAMS.56.57.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Applied Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32861/AJAMS.56.57.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了蒙特卡罗方法在生产函数参数估计中的应用。采用普通最小二乘法对未知参数进行估计。数据生成过程采用蒙特卡罗模拟方法。对生成的数据进行了带有乘法误差项的Cobb-Douglas生产模型拟合。从表1.1到1.3中,对于样本量为20、40和80的情况,结果的均方误差(MSE)分别为0.007678、0.001972和0.001253。我们的发现表明,均方误差(MSE)值随输入变量幂的和而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Econometric Estimation of Production Function with Applications
This study focuses on Monte Carlo Methods in parameter estimation of production function. The ordinary least square (OLS) method is used to estimate the unknown parameters. The Monte Carlo simulation methods are used for the data generating process. The Cobb-Douglas production model with multiplicative error term is fitted to the data generated. From tables 1.1 to 1.3, the mean square error (MSE) of 1 are 0.007678, 0.001972 and 0.001253 respectively for sample sizes 20, 40 and 80. Our finding showed that the mean square error (MSE) value varies with the sum of the powers of the input variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Special Spirals are Produced by the ROTASE Galactic Spiral Equations with the Sequential Prime Numbers On Bivariate Modeling of the COVID-19 Data with a New Type I Half-Logistic Inverse Weibull Distribution Stable Numerical Differentiation Algorithms Based on the Fourier Transform in Frequency Domain Rotation Equation of a Point in Air and its Solution Linear Programming on Bread Production Using Uncertainty Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1