基于改进Akaike信息准则的半参数和加性模型选择

J. Simonoff, Chih-Ling Tsai
{"title":"基于改进Akaike信息准则的半参数和加性模型选择","authors":"J. Simonoff, Chih-Ling Tsai","doi":"10.1080/10618600.1999.10474799","DOIUrl":null,"url":null,"abstract":"Abstract An improved AIC-based criterion is derived for model selection in general smoothing-based modeling, including semiparametric models and additive models. Examples are provided of applications to goodness-of-fit, smoothing parameter and variable selection in an additive model and semiparametric models, and variable selection in a model with a nonlinear function of linear terms.","PeriodicalId":309676,"journal":{"name":"NYU: IOMS: Statistics Working Papers (Topic)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Semiparametric and Additive Model Selection Using an Improved Akaike Information Criterion\",\"authors\":\"J. Simonoff, Chih-Ling Tsai\",\"doi\":\"10.1080/10618600.1999.10474799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An improved AIC-based criterion is derived for model selection in general smoothing-based modeling, including semiparametric models and additive models. Examples are provided of applications to goodness-of-fit, smoothing parameter and variable selection in an additive model and semiparametric models, and variable selection in a model with a nonlinear function of linear terms.\",\"PeriodicalId\":309676,\"journal\":{\"name\":\"NYU: IOMS: Statistics Working Papers (Topic)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NYU: IOMS: Statistics Working Papers (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10618600.1999.10474799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NYU: IOMS: Statistics Working Papers (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10618600.1999.10474799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

摘要提出了一种改进的基于aic的模型选择准则,用于一般基于平滑的建模,包括半参数模型和加性模型。给出了在拟合优度、加性模型和半参数模型的平滑参数和变量选择、线性项非线性函数模型的变量选择等方面的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semiparametric and Additive Model Selection Using an Improved Akaike Information Criterion
Abstract An improved AIC-based criterion is derived for model selection in general smoothing-based modeling, including semiparametric models and additive models. Examples are provided of applications to goodness-of-fit, smoothing parameter and variable selection in an additive model and semiparametric models, and variable selection in a model with a nonlinear function of linear terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Likelihood Estimation of Hidden Markov Processes Semiparametric and Additive Model Selection Using an Improved Akaike Information Criterion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1