首页 > 最新文献

NYU: IOMS: Statistics Working Papers (Topic)最新文献

英文 中文
Maximum Likelihood Estimation of Hidden Markov Processes 隐马尔可夫过程的极大似然估计
Pub Date : 2003-11-01 DOI: 10.1214/AOAP/1069786500
H. Frydman, P. Lakner
We consider the process dYt = ut dt + dWt , where u is a processnot necessarily adapted to F Y (the filtration generated by the process Y)and W is a Brownian motion. We obtain a general representation for thelikelihood ratio of the law of the Y process relative to Brownian measure.This representation involves only one basic filter (expectation of u conditionalon observed process Y). This generalizes the result of Kailath and Zakai[Ann.Math. Statist. 42 (1971) 130â€"140] where it is assumed that the process uis adapted to F Y . In particular, we consider the model in which u is afunctional of Y and of a random element X which is independent of theBrownian motion W. For example, X could be a diffusion or a Markov chain.This result can be applied to the estimation of an unknown multidimensionalparameter I¸ appearing in the dynamics of the process u based on continuousobservation of Y on the time interval [0,T ]. For a specific hidden diffusionfinancial model in which u is an unobserved mean-reverting diffusion, wegive an explicit form for the likelihood function of I¸. For this model we alsodevelop a computationally explicit Eâ€"M algorithm for the estimation of I¸. Incontrast to the likelihood ratio, the algorithm involves evaluation of a numberof filtered integrals in addition to the basic filter.
我们考虑过程dYt = ut dt + dWt,其中u是一个不一定适应于fy(过程Y产生的过滤)的过程,W是布朗运动。我们得到了Y过程定律相对于布朗测度的似然比的一般表示。这种表示只涉及一个基本过滤器(u条件下观察过程Y的期望)。这推广了Kailath和Zakai[Ann.Math]的结果。统计学家。42 (1971)130 ` ` 140]其中假定该过程已适应于F Y。特别地,我们考虑u是Y和一个独立于布朗运动w的随机元素X的函数的模型,例如,X可以是一个扩散或马尔可夫链。该结果可应用于基于Y在时间区间[0,T]上的连续观测来估计过程u动力学中出现的未知多维参数I。对于一个特定的隐藏扩散金融模型,其中u是一个未观察到的均值回归扩散,我们给出了I的似然函数的显式形式。对于该模型,我们还开发了一种计算显式的e ' M算法来估计I ';与似然比相比,该算法除了基本滤波器之外,还涉及对一些过滤积分的评估。
{"title":"Maximum Likelihood Estimation of Hidden Markov Processes","authors":"H. Frydman, P. Lakner","doi":"10.1214/AOAP/1069786500","DOIUrl":"https://doi.org/10.1214/AOAP/1069786500","url":null,"abstract":"We consider the process dYt = ut dt + dWt , where u is a processnot necessarily adapted to F Y (the filtration generated by the process Y)and W is a Brownian motion. We obtain a general representation for thelikelihood ratio of the law of the Y process relative to Brownian measure.This representation involves only one basic filter (expectation of u conditionalon observed process Y). This generalizes the result of Kailath and Zakai[Ann.Math. Statist. 42 (1971) 130â€\"140] where it is assumed that the process uis adapted to F Y . In particular, we consider the model in which u is afunctional of Y and of a random element X which is independent of theBrownian motion W. For example, X could be a diffusion or a Markov chain.This result can be applied to the estimation of an unknown multidimensionalparameter I¸ appearing in the dynamics of the process u based on continuousobservation of Y on the time interval [0,T ]. For a specific hidden diffusionfinancial model in which u is an unobserved mean-reverting diffusion, wegive an explicit form for the likelihood function of I¸. For this model we alsodevelop a computationally explicit Eâ€\"M algorithm for the estimation of I¸. Incontrast to the likelihood ratio, the algorithm involves evaluation of a numberof filtered integrals in addition to the basic filter.","PeriodicalId":309676,"journal":{"name":"NYU: IOMS: Statistics Working Papers (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126669658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Semiparametric and Additive Model Selection Using an Improved Akaike Information Criterion 基于改进Akaike信息准则的半参数和加性模型选择
Pub Date : 1999-03-01 DOI: 10.1080/10618600.1999.10474799
J. Simonoff, Chih-Ling Tsai
Abstract An improved AIC-based criterion is derived for model selection in general smoothing-based modeling, including semiparametric models and additive models. Examples are provided of applications to goodness-of-fit, smoothing parameter and variable selection in an additive model and semiparametric models, and variable selection in a model with a nonlinear function of linear terms.
摘要提出了一种改进的基于aic的模型选择准则,用于一般基于平滑的建模,包括半参数模型和加性模型。给出了在拟合优度、加性模型和半参数模型的平滑参数和变量选择、线性项非线性函数模型的变量选择等方面的应用实例。
{"title":"Semiparametric and Additive Model Selection Using an Improved Akaike Information Criterion","authors":"J. Simonoff, Chih-Ling Tsai","doi":"10.1080/10618600.1999.10474799","DOIUrl":"https://doi.org/10.1080/10618600.1999.10474799","url":null,"abstract":"Abstract An improved AIC-based criterion is derived for model selection in general smoothing-based modeling, including semiparametric models and additive models. Examples are provided of applications to goodness-of-fit, smoothing parameter and variable selection in an additive model and semiparametric models, and variable selection in a model with a nonlinear function of linear terms.","PeriodicalId":309676,"journal":{"name":"NYU: IOMS: Statistics Working Papers (Topic)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1999-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121795228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 49
期刊
NYU: IOMS: Statistics Working Papers (Topic)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1