准层流裂纹场中裂纹相互作用的数值研究

C. Swacek, X. Schuler, M. Seidenfuss
{"title":"准层流裂纹场中裂纹相互作用的数值研究","authors":"C. Swacek, X. Schuler, M. Seidenfuss","doi":"10.1115/PVP2018-84688","DOIUrl":null,"url":null,"abstract":"Non-destructive testing measurements in the Belgian nuclear power plants Doel 3 and Tihange 2 revealed a high quantity of indications in the upper and lower core shells of the reactor pressure vessels. The most likely explanation is that the indications are hydrogen flakes positioned in segregated zones of the base material of the pressure vessel. These hydrogen flakes have a laminar and quasi-laminar orientation to the pressure retaining surface. Under mechanical loading the crack tips undergo predominantly mixed mode loading conditions, where the induced stress and strain fields of the single crack tips influence each other. Due to these specific loading conditions, the assumptions for classical standardized fracture mechanical methods are not met. Currently, there is no verified concept for the evaluation of such kind of crack fields.\n Therefore the mechanical behavior of components with laminar crack fields and the interaction of cracks in such crack fields are investigated in an ongoing research project. Relevant parameters to describe crack fields in terms of crack size, crack location and crack orientation are derived from literature and own nondestructive measurements. Damage mechanical approaches are used in finite element calculations to investigate the interaction of cracks. Advanced damage mechanical models will be used to investigate crack initiation, crack growth and coalescence of cracks in crack fields. According to the results, representative parameters for crack fields will be derived and critical crack formations determined. The results will be evaluated and compared with state of the art approaches and standards.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigations on the Interaction of Cracks in Quasi-Laminar Crack Fields\",\"authors\":\"C. Swacek, X. Schuler, M. Seidenfuss\",\"doi\":\"10.1115/PVP2018-84688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-destructive testing measurements in the Belgian nuclear power plants Doel 3 and Tihange 2 revealed a high quantity of indications in the upper and lower core shells of the reactor pressure vessels. The most likely explanation is that the indications are hydrogen flakes positioned in segregated zones of the base material of the pressure vessel. These hydrogen flakes have a laminar and quasi-laminar orientation to the pressure retaining surface. Under mechanical loading the crack tips undergo predominantly mixed mode loading conditions, where the induced stress and strain fields of the single crack tips influence each other. Due to these specific loading conditions, the assumptions for classical standardized fracture mechanical methods are not met. Currently, there is no verified concept for the evaluation of such kind of crack fields.\\n Therefore the mechanical behavior of components with laminar crack fields and the interaction of cracks in such crack fields are investigated in an ongoing research project. Relevant parameters to describe crack fields in terms of crack size, crack location and crack orientation are derived from literature and own nondestructive measurements. Damage mechanical approaches are used in finite element calculations to investigate the interaction of cracks. Advanced damage mechanical models will be used to investigate crack initiation, crack growth and coalescence of cracks in crack fields. According to the results, representative parameters for crack fields will be derived and critical crack formations determined. The results will be evaluated and compared with state of the art approaches and standards.\",\"PeriodicalId\":128383,\"journal\":{\"name\":\"Volume 1A: Codes and Standards\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1A: Codes and Standards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在比利时核电站Doel 3和Tihange 2的无损检测测量中发现,反应堆压力容器的上、下堆芯壳中有大量迹象。最可能的解释是,这些迹象是位于压力容器基材分离区域的氢片。这些氢薄片对保压表面具有层流和准层流取向。在机械载荷作用下,裂纹尖端主要处于混合加载状态,单个裂纹尖端的诱导应力场和应变场相互影响。由于这些特殊的载荷条件,经典的标准化断裂力学方法的假设不满足。目前,对于这类裂缝场的评价还没有经过验证的概念。因此,层流裂纹场中构件的力学行为以及裂纹在层流裂纹场中的相互作用是一项正在进行的研究项目。从裂纹尺寸、裂纹位置和裂纹方向等方面描述裂纹场的相关参数来源于文献和自己的无损测量。在有限元计算中使用损伤力学方法来研究裂纹的相互作用。先进的损伤力学模型将用于研究裂纹场中的裂纹萌生、裂纹扩展和裂纹合并。根据研究结果,导出裂纹场的代表性参数,确定临界裂纹形成。结果将被评估,并与最先进的方法和标准进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Investigations on the Interaction of Cracks in Quasi-Laminar Crack Fields
Non-destructive testing measurements in the Belgian nuclear power plants Doel 3 and Tihange 2 revealed a high quantity of indications in the upper and lower core shells of the reactor pressure vessels. The most likely explanation is that the indications are hydrogen flakes positioned in segregated zones of the base material of the pressure vessel. These hydrogen flakes have a laminar and quasi-laminar orientation to the pressure retaining surface. Under mechanical loading the crack tips undergo predominantly mixed mode loading conditions, where the induced stress and strain fields of the single crack tips influence each other. Due to these specific loading conditions, the assumptions for classical standardized fracture mechanical methods are not met. Currently, there is no verified concept for the evaluation of such kind of crack fields. Therefore the mechanical behavior of components with laminar crack fields and the interaction of cracks in such crack fields are investigated in an ongoing research project. Relevant parameters to describe crack fields in terms of crack size, crack location and crack orientation are derived from literature and own nondestructive measurements. Damage mechanical approaches are used in finite element calculations to investigate the interaction of cracks. Advanced damage mechanical models will be used to investigate crack initiation, crack growth and coalescence of cracks in crack fields. According to the results, representative parameters for crack fields will be derived and critical crack formations determined. The results will be evaluated and compared with state of the art approaches and standards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of Target Flaw Sizes of CASS Pipe for PD Approval Using PFM Code Preface Effect of Pre-Heat Treatment on Hydrogen Concentration Behavior of y-Grooved Weld Joint Based on a Coupled Analysis of Heat Transfer-Thermal Stress-Hydrogen Diffusion Hydrogen Diffusion Concentration Behaviors for Square Groove Weld Joint Cyclic, Monotonic and Fatigue Performance of Stabilized Stainless Steel in PWR Water and Research Laboratory Interlaboratory Study for Small Punch Testing Preliminary Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1