频率选择信道中最优功率分配的比奈奎斯特更快的预编码信令

T. Ishihara, S. Sugiura
{"title":"频率选择信道中最优功率分配的比奈奎斯特更快的预编码信令","authors":"T. Ishihara, S. Sugiura","doi":"10.1109/ICCWorkshops50388.2021.9473860","DOIUrl":null,"url":null,"abstract":"In this paper, we propose eigendecomposition-precoded faster-than-Nyquist (FTN) signaling with power allocation in a frequency-selective fading channel. More specifically, we derive mutual information associated with the proposed FTN signaling. Then, the optimal power coefficients are calculated such that the derived mutual information is maximized. Our analytical performance results show that the proposed FTN signaling scheme achieves a higher information rate than the conventional FTN signaling scheme without relying on power allocation and the classic Nyquist-based signaling scheme, under the assumption that all the schemes employ a root-raised cosine shaping filter. Moreover, our numerical simulation results of the bit error ratio performance and the power spectral density demonstrate that the proposed FTN scheme outperforms the conventional Nyquist-based signaling scheme without sacrificing any bandwidth broadening.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Precoded Faster-than-Nyquist Signaling with Optimal Power Allocation in Frequency-Selective Channel\",\"authors\":\"T. Ishihara, S. Sugiura\",\"doi\":\"10.1109/ICCWorkshops50388.2021.9473860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose eigendecomposition-precoded faster-than-Nyquist (FTN) signaling with power allocation in a frequency-selective fading channel. More specifically, we derive mutual information associated with the proposed FTN signaling. Then, the optimal power coefficients are calculated such that the derived mutual information is maximized. Our analytical performance results show that the proposed FTN signaling scheme achieves a higher information rate than the conventional FTN signaling scheme without relying on power allocation and the classic Nyquist-based signaling scheme, under the assumption that all the schemes employ a root-raised cosine shaping filter. Moreover, our numerical simulation results of the bit error ratio performance and the power spectral density demonstrate that the proposed FTN scheme outperforms the conventional Nyquist-based signaling scheme without sacrificing any bandwidth broadening.\",\"PeriodicalId\":127186,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWorkshops50388.2021.9473860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了在频率选择性衰落信道中具有功率分配的特征分解预编码比奈奎斯特(FTN)更快的信令。更具体地说,我们导出了与所提出的FTN信令相关的互信息。然后,计算最优功率系数,使导出的互信息最大化。我们的性能分析结果表明,在假设所有方案都采用提升根余弦整形滤波器的情况下,所提出的FTN信令方案在不依赖功率分配的情况下比传统的FTN信令方案和经典的基于nyquist的信令方案获得更高的信息速率。此外,我们的误码率性能和功率谱密度的数值模拟结果表明,所提出的FTN方案在不牺牲任何带宽扩展的情况下优于传统的基于nyquist的信令方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precoded Faster-than-Nyquist Signaling with Optimal Power Allocation in Frequency-Selective Channel
In this paper, we propose eigendecomposition-precoded faster-than-Nyquist (FTN) signaling with power allocation in a frequency-selective fading channel. More specifically, we derive mutual information associated with the proposed FTN signaling. Then, the optimal power coefficients are calculated such that the derived mutual information is maximized. Our analytical performance results show that the proposed FTN signaling scheme achieves a higher information rate than the conventional FTN signaling scheme without relying on power allocation and the classic Nyquist-based signaling scheme, under the assumption that all the schemes employ a root-raised cosine shaping filter. Moreover, our numerical simulation results of the bit error ratio performance and the power spectral density demonstrate that the proposed FTN scheme outperforms the conventional Nyquist-based signaling scheme without sacrificing any bandwidth broadening.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BML: An Efficient and Versatile Tool for BGP Dataset Collection Efficient and Privacy-Preserving Contact Tracing System for Covid-19 using Blockchain MEC-Based Energy-Aware Distributed Feature Extraction for mHealth Applications with Strict Latency Requirements Distributed Multi-Agent Learning for Service Function Chain Partial Offloading at the Edge A Deep Neural Network Based Environment Sensing in the Presence of Jammers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1