推力矢量无人坐尾机对阵风载荷的鲁棒悬停控制

Y. Hang, Zhu Jihong, Yuan Xiaming, Zhang Chao
{"title":"推力矢量无人坐尾机对阵风载荷的鲁棒悬停控制","authors":"Y. Hang, Zhu Jihong, Yuan Xiaming, Zhang Chao","doi":"10.1109/ICCA.2013.6565040","DOIUrl":null,"url":null,"abstract":"Vertical take-off and landing (VTOL) aircraft has the merits of both fixed-wing and rotary-wing aircraft. Tail-sitter is the simplest way for the VTOL maneuver since it does not need extra actuators. However, conventional tail-sitting airplanes made by propellers or duct fans have less thrust and efficiency. In this paper a conceptual thrust-vectored unmanned tail-sitter (CTUT) aircraft which is controlled by no control surfaces but only with two thrust vectors is introduced. However, the system of hovering control for a tail-sitter UAV is like a 3-D inverse pendulum, which is unstable and quite difficult to control against the gust load in traditional PID controllers. In this paper, the synthesized system model including thrust-vectored tail-sitter aircraft model, actuator system and gust model is developed. The LQG/LTR control for robust hovering against gust load is proposed. The results show that the controller designed successfully compensates the errors generated by gust.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust hover control of thrust-vectored unmanned tail-sitter aircraft against gust load\",\"authors\":\"Y. Hang, Zhu Jihong, Yuan Xiaming, Zhang Chao\",\"doi\":\"10.1109/ICCA.2013.6565040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertical take-off and landing (VTOL) aircraft has the merits of both fixed-wing and rotary-wing aircraft. Tail-sitter is the simplest way for the VTOL maneuver since it does not need extra actuators. However, conventional tail-sitting airplanes made by propellers or duct fans have less thrust and efficiency. In this paper a conceptual thrust-vectored unmanned tail-sitter (CTUT) aircraft which is controlled by no control surfaces but only with two thrust vectors is introduced. However, the system of hovering control for a tail-sitter UAV is like a 3-D inverse pendulum, which is unstable and quite difficult to control against the gust load in traditional PID controllers. In this paper, the synthesized system model including thrust-vectored tail-sitter aircraft model, actuator system and gust model is developed. The LQG/LTR control for robust hovering against gust load is proposed. The results show that the controller designed successfully compensates the errors generated by gust.\",\"PeriodicalId\":336534,\"journal\":{\"name\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2013.6565040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6565040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

垂直起降(VTOL)飞机具有固定翼飞机和旋翼飞机的优点。由于不需要额外的致动器,尾座式是最简单的垂直起降机动方式。然而,由螺旋桨或管道风扇制造的传统尾翼飞机的推力和效率都较小。本文介绍了一种无控制面、只有两个推力矢量控制的推力矢量无人坐尾飞行器的概念。然而,坐尾无人机的悬停控制系统就像一个三维倒摆,传统的PID控制器在阵风载荷作用下不稳定且难以控制。建立了包括推力矢量尾翼飞机模型、作动器系统模型和阵风模型在内的综合系统模型。提出了针对阵风载荷鲁棒悬停的LQG/LTR控制方法。结果表明,所设计的控制器成功地补偿了阵风产生的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust hover control of thrust-vectored unmanned tail-sitter aircraft against gust load
Vertical take-off and landing (VTOL) aircraft has the merits of both fixed-wing and rotary-wing aircraft. Tail-sitter is the simplest way for the VTOL maneuver since it does not need extra actuators. However, conventional tail-sitting airplanes made by propellers or duct fans have less thrust and efficiency. In this paper a conceptual thrust-vectored unmanned tail-sitter (CTUT) aircraft which is controlled by no control surfaces but only with two thrust vectors is introduced. However, the system of hovering control for a tail-sitter UAV is like a 3-D inverse pendulum, which is unstable and quite difficult to control against the gust load in traditional PID controllers. In this paper, the synthesized system model including thrust-vectored tail-sitter aircraft model, actuator system and gust model is developed. The LQG/LTR control for robust hovering against gust load is proposed. The results show that the controller designed successfully compensates the errors generated by gust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cooperative task planning for multiple autonomous UAVs with graph representation and genetic algorithm Real-time measure and control system of biped walking robot based on sensor Simultaneously scheduling production plan and maintenance policy for a single machine with failure uncertainty Fuzzy grey sliding mode control for maximum power point tracking of photovoltaic systems A data-driven approach for sensor fault diagnosis in gearbox of wind energy conversion system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1