形态学随机森林用于屈折语言的语言建模

I. Oparin, O. Glembek, L. Burget, J. Černocký
{"title":"形态学随机森林用于屈折语言的语言建模","authors":"I. Oparin, O. Glembek, L. Burget, J. Černocký","doi":"10.1109/SLT.2008.4777872","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with using decision trees (DT) and random forests (RF) in language modeling for Czech LVCSR. We show that the RF approach can be successfully implemented for language modeling of an inflectional language. Performance of word-based and morphological DTs and RFs was evaluated on lecture recognition task. We show that while DTs perform worse than conventional trigram language models (LM), RFs of both kind outperform the latter. WER (up to 3.4% relative) and perplexity (10%) reduction over the trigram model can be gained with morphological RFs. Further improvement is obtained after interpolation of DT and RF LMs with the trigram one (up to 15.6% perplexity and 4.8% WER relative reduction). In this paper we also investigate distribution of morphological feature types chosen for splitting data at different levels of DTs.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Morphological random forests for language modeling of inflectional languages\",\"authors\":\"I. Oparin, O. Glembek, L. Burget, J. Černocký\",\"doi\":\"10.1109/SLT.2008.4777872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with using decision trees (DT) and random forests (RF) in language modeling for Czech LVCSR. We show that the RF approach can be successfully implemented for language modeling of an inflectional language. Performance of word-based and morphological DTs and RFs was evaluated on lecture recognition task. We show that while DTs perform worse than conventional trigram language models (LM), RFs of both kind outperform the latter. WER (up to 3.4% relative) and perplexity (10%) reduction over the trigram model can be gained with morphological RFs. Further improvement is obtained after interpolation of DT and RF LMs with the trigram one (up to 15.6% perplexity and 4.8% WER relative reduction). In this paper we also investigate distribution of morphological feature types chosen for splitting data at different levels of DTs.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们关注的是使用决策树(DT)和随机森林(RF)的语言建模捷克LVCSR。我们证明了射频方法可以成功地用于屈折语言的语言建模。对基于词的、形态的DTs和RFs在演讲识别任务中的表现进行了评价。我们表明,虽然dtd的性能比传统的三元语言模型(LM)差,但两种rdf的性能都优于后者。相对于三元组模型,形态学RFs可以获得WER(相对高达3.4%)和perplexity(10%)的降低。用三元模型插值DT和RF模型后,得到了进一步的改进(perplexity高达15.6%,WER相对降低4.8%)。在本文中,我们还研究了在不同层次的数据分割中选择的形态学特征类型的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphological random forests for language modeling of inflectional languages
In this paper, we are concerned with using decision trees (DT) and random forests (RF) in language modeling for Czech LVCSR. We show that the RF approach can be successfully implemented for language modeling of an inflectional language. Performance of word-based and morphological DTs and RFs was evaluated on lecture recognition task. We show that while DTs perform worse than conventional trigram language models (LM), RFs of both kind outperform the latter. WER (up to 3.4% relative) and perplexity (10%) reduction over the trigram model can be gained with morphological RFs. Further improvement is obtained after interpolation of DT and RF LMs with the trigram one (up to 15.6% perplexity and 4.8% WER relative reduction). In this paper we also investigate distribution of morphological feature types chosen for splitting data at different levels of DTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Who is this” quiz dialogue system and users' evaluation Latent dirichlet language model for speech recognition Modelling user behaviour in the HIS-POMDP dialogue manager A syntactic language model based on incremental CCG parsing Improving word segmentation for Thai speech translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1