M. Mosca, I. Crupi, D. Russotto, G. Lullo, R. Macaluso, Giuseppe Costantino Giaconia, S. Mirabella, E. Feltin
{"title":"化学浴沉积是一种生长分离和聚结ZnO纳米棒的简单方法,用于制造发光二极管","authors":"M. Mosca, I. Crupi, D. Russotto, G. Lullo, R. Macaluso, Giuseppe Costantino Giaconia, S. Mirabella, E. Feltin","doi":"10.1109/RTSI.2018.8548374","DOIUrl":null,"url":null,"abstract":"A way to grow and characterize isolated and coalesced ZnO nanorods on $p$-GaN/sapphire structure is presented. Chemical bath deposition can be used to grow ZnO nanorods of device-quality, simply controlling the duration time of the growth process and the concentration of the nutrient solution in the bath. Increasing the duration of the process, as well as the concentration of the solution, leads to compact and sound layers instead of separated nanorods. However, too high concentrations stop the growth process. Light-emitting diodes fabricated on these ZnO-p-GaN heterostructure have a peak of electroluminescence at 400 nm and exhibit interesting electrical and optical properties. Optical power of 225 µW at 0.425 $A$/cm2and a related wall-plug efficiency of 0.23% are obtained with 2 mm-diameter LEDs fabricated on a ZnO layer grown for 30 h in a solution of concentration 70 mM. The performances shown by these LEDs can be used as a way to test the quality of the ZnO growth.","PeriodicalId":363896,"journal":{"name":"2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chemical Bath Deposition as a Simple Way to Grow Isolated and Coalesced ZnO Nanorods for Light-Emitting Diodes Fabrication\",\"authors\":\"M. Mosca, I. Crupi, D. Russotto, G. Lullo, R. Macaluso, Giuseppe Costantino Giaconia, S. Mirabella, E. Feltin\",\"doi\":\"10.1109/RTSI.2018.8548374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A way to grow and characterize isolated and coalesced ZnO nanorods on $p$-GaN/sapphire structure is presented. Chemical bath deposition can be used to grow ZnO nanorods of device-quality, simply controlling the duration time of the growth process and the concentration of the nutrient solution in the bath. Increasing the duration of the process, as well as the concentration of the solution, leads to compact and sound layers instead of separated nanorods. However, too high concentrations stop the growth process. Light-emitting diodes fabricated on these ZnO-p-GaN heterostructure have a peak of electroluminescence at 400 nm and exhibit interesting electrical and optical properties. Optical power of 225 µW at 0.425 $A$/cm2and a related wall-plug efficiency of 0.23% are obtained with 2 mm-diameter LEDs fabricated on a ZnO layer grown for 30 h in a solution of concentration 70 mM. The performances shown by these LEDs can be used as a way to test the quality of the ZnO growth.\",\"PeriodicalId\":363896,\"journal\":{\"name\":\"2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)\",\"volume\":\"175 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSI.2018.8548374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSI.2018.8548374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chemical Bath Deposition as a Simple Way to Grow Isolated and Coalesced ZnO Nanorods for Light-Emitting Diodes Fabrication
A way to grow and characterize isolated and coalesced ZnO nanorods on $p$-GaN/sapphire structure is presented. Chemical bath deposition can be used to grow ZnO nanorods of device-quality, simply controlling the duration time of the growth process and the concentration of the nutrient solution in the bath. Increasing the duration of the process, as well as the concentration of the solution, leads to compact and sound layers instead of separated nanorods. However, too high concentrations stop the growth process. Light-emitting diodes fabricated on these ZnO-p-GaN heterostructure have a peak of electroluminescence at 400 nm and exhibit interesting electrical and optical properties. Optical power of 225 µW at 0.425 $A$/cm2and a related wall-plug efficiency of 0.23% are obtained with 2 mm-diameter LEDs fabricated on a ZnO layer grown for 30 h in a solution of concentration 70 mM. The performances shown by these LEDs can be used as a way to test the quality of the ZnO growth.