使用主题建模分析巴拿马议会程序与神经和统计方法

Kenji Contreras, Gabriel Verbel, J. Sánchez, J. Sánchez-Galán
{"title":"使用主题建模分析巴拿马议会程序与神经和统计方法","authors":"Kenji Contreras, Gabriel Verbel, J. Sánchez, J. Sánchez-Galán","doi":"10.1109/CONCAPAN48024.2022.9997766","DOIUrl":null,"url":null,"abstract":"This work used statistical and neural topic modelling algorithms to perform an unsupervised analysis on a Panamanian parliamentary proceedings corpus of 2086 Spanish language texts. The statistical algorithm known as Latent Dirichlet Allocation (LDA) was employed and its performance compared to BERTopic, a neural-based method that encompasses deep neural document embeddings, non-linear dimensionality reduction, and hierarchical density clustering. Both models achieved topic diversity and coherence, yielding interpretable results with different levels of semantic abstraction. Furthermore, taking advantage of BERTopic’s features, Dynamic Topic Modelling analysis showed global and evolutionary word frequency of health-related topics. Results can be used for in-depth analysis of political trends, even though more complex hyperparameter tuning might be necessary to achieve higher topic coherence and interpretability.","PeriodicalId":138415,"journal":{"name":"2022 IEEE 40th Central America and Panama Convention (CONCAPAN)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Topic Modelling for Analyzing Panamanian Parliamentary Proceedings with Neural and Statistical Methods\",\"authors\":\"Kenji Contreras, Gabriel Verbel, J. Sánchez, J. Sánchez-Galán\",\"doi\":\"10.1109/CONCAPAN48024.2022.9997766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work used statistical and neural topic modelling algorithms to perform an unsupervised analysis on a Panamanian parliamentary proceedings corpus of 2086 Spanish language texts. The statistical algorithm known as Latent Dirichlet Allocation (LDA) was employed and its performance compared to BERTopic, a neural-based method that encompasses deep neural document embeddings, non-linear dimensionality reduction, and hierarchical density clustering. Both models achieved topic diversity and coherence, yielding interpretable results with different levels of semantic abstraction. Furthermore, taking advantage of BERTopic’s features, Dynamic Topic Modelling analysis showed global and evolutionary word frequency of health-related topics. Results can be used for in-depth analysis of political trends, even though more complex hyperparameter tuning might be necessary to achieve higher topic coherence and interpretability.\",\"PeriodicalId\":138415,\"journal\":{\"name\":\"2022 IEEE 40th Central America and Panama Convention (CONCAPAN)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 40th Central America and Panama Convention (CONCAPAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONCAPAN48024.2022.9997766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 40th Central America and Panama Convention (CONCAPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONCAPAN48024.2022.9997766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作使用统计和神经主题建模算法对2086个西班牙语文本的巴拿马议会会议语料库进行无监督分析。采用了一种称为潜狄利克雷分配(Latent Dirichlet Allocation, LDA)的统计算法,并将其性能与BERTopic进行了比较。BERTopic是一种基于神经的方法,包含深度神经文档嵌入、非线性降维和分层密度聚类。两种模型都实现了主题的多样性和连贯性,产生了不同层次语义抽象的可解释结果。此外,利用BERTopic的特点,动态主题建模分析显示了健康相关主题的全局和进化词频。结果可用于政治趋势的深入分析,尽管可能需要更复杂的超参数调整来实现更高的主题一致性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Topic Modelling for Analyzing Panamanian Parliamentary Proceedings with Neural and Statistical Methods
This work used statistical and neural topic modelling algorithms to perform an unsupervised analysis on a Panamanian parliamentary proceedings corpus of 2086 Spanish language texts. The statistical algorithm known as Latent Dirichlet Allocation (LDA) was employed and its performance compared to BERTopic, a neural-based method that encompasses deep neural document embeddings, non-linear dimensionality reduction, and hierarchical density clustering. Both models achieved topic diversity and coherence, yielding interpretable results with different levels of semantic abstraction. Furthermore, taking advantage of BERTopic’s features, Dynamic Topic Modelling analysis showed global and evolutionary word frequency of health-related topics. Results can be used for in-depth analysis of political trends, even though more complex hyperparameter tuning might be necessary to achieve higher topic coherence and interpretability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless-based pest control in tomato crops Analysis of the Crucial Factors in Biomass Electricity Generation Energy management strategies in stand alone hybrid renewable energy systems Canopy Extraction in a Banana Crop From UAV Captured Multispectral Images Multistage Decimation Filter with Decreased Complexity and Improved Aliasing Rejection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1