基于深度学习的传感器级融合多模态生物特征识别

Boucetta Aldjia, Boussaad Leila
{"title":"基于深度学习的传感器级融合多模态生物特征识别","authors":"Boucetta Aldjia, Boussaad Leila","doi":"10.1109/ICRAMI52622.2021.9585900","DOIUrl":null,"url":null,"abstract":"In this paper, a new multi-modal biometric identification system is proposed using a Convolutional neural network (CNN), in which we make an early fusion (sensor level fusion) of face, palmprint, and iris by stacking the three biometric like RGB channels of an image, then used as input to CNN. This approach uses four popular pretrained deep-convolutional neural network (CNN) models, which are Inceptionv3, GoogleNet, ResNet18, and SqueezeNet, to make a robust and fast classification. Also, it avoids training a new model from scratch that needs lots of data and calculations. So, we explore the pretrained deep-convolutional neural network by two strategies: feature extraction and fine-tuning. In the first strategy, the pre-trained deep-convolutional neural network (CNN) models are used as feature extractors, and in the second one, the pretrained SqueezeNet model is adopted to our task with 152 classes instead of the ImagenNet classification with 1000 classes. The experimental results of the proposed multi-modal biometric system achieve promising accuracy.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sensor Level Fusion for Multi-modal Biometric Identification using Deep Learning\",\"authors\":\"Boucetta Aldjia, Boussaad Leila\",\"doi\":\"10.1109/ICRAMI52622.2021.9585900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new multi-modal biometric identification system is proposed using a Convolutional neural network (CNN), in which we make an early fusion (sensor level fusion) of face, palmprint, and iris by stacking the three biometric like RGB channels of an image, then used as input to CNN. This approach uses four popular pretrained deep-convolutional neural network (CNN) models, which are Inceptionv3, GoogleNet, ResNet18, and SqueezeNet, to make a robust and fast classification. Also, it avoids training a new model from scratch that needs lots of data and calculations. So, we explore the pretrained deep-convolutional neural network by two strategies: feature extraction and fine-tuning. In the first strategy, the pre-trained deep-convolutional neural network (CNN) models are used as feature extractors, and in the second one, the pretrained SqueezeNet model is adopted to our task with 152 classes instead of the ImagenNet classification with 1000 classes. The experimental results of the proposed multi-modal biometric system achieve promising accuracy.\",\"PeriodicalId\":440750,\"journal\":{\"name\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMI52622.2021.9585900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用卷积神经网络(CNN)提出了一种新的多模态生物特征识别系统,该系统通过叠加图像的三个类似RGB的生物特征通道,对人脸、掌纹和虹膜进行早期融合(传感器级融合),然后作为CNN的输入。该方法使用四种流行的预训练深度卷积神经网络(CNN)模型,分别是Inceptionv3、GoogleNet、ResNet18和SqueezeNet,来进行鲁棒和快速分类。此外,它避免了从头开始训练一个需要大量数据和计算的新模型。因此,我们通过特征提取和微调两种策略来探索预训练的深度卷积神经网络。在第一种策略中,使用预训练的深度卷积神经网络(CNN)模型作为特征提取器,在第二种策略中,使用预训练的SqueezeNet模型来完成我们有152个类的任务,而不是使用1000个类的ImagenNet分类。实验结果表明,所提出的多模态生物识别系统具有良好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensor Level Fusion for Multi-modal Biometric Identification using Deep Learning
In this paper, a new multi-modal biometric identification system is proposed using a Convolutional neural network (CNN), in which we make an early fusion (sensor level fusion) of face, palmprint, and iris by stacking the three biometric like RGB channels of an image, then used as input to CNN. This approach uses four popular pretrained deep-convolutional neural network (CNN) models, which are Inceptionv3, GoogleNet, ResNet18, and SqueezeNet, to make a robust and fast classification. Also, it avoids training a new model from scratch that needs lots of data and calculations. So, we explore the pretrained deep-convolutional neural network by two strategies: feature extraction and fine-tuning. In the first strategy, the pre-trained deep-convolutional neural network (CNN) models are used as feature extractors, and in the second one, the pretrained SqueezeNet model is adopted to our task with 152 classes instead of the ImagenNet classification with 1000 classes. The experimental results of the proposed multi-modal biometric system achieve promising accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation Of The Structure FSS Using The WCIP Method For Dual Polarization Applications Impact of Mixup Hyperparameter Tunning on Deep Learning-based Systems for Acoustic Scene Classification Analysis of Solutions for a Reaction-Diffusion Epidemic Model Segmentation of Positron Emission Tomography Images Using Multi-atlas Anatomical Magnetic Resonance Imaging (MRI) Multi-Input CNN for molecular classification in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1