Navuday Sharma, M. Alam, Y. Moullec, Hassan Malik, M. Bennis, Sven Pärand
{"title":"利用URLLC上行控制信道的动态无线电帧配置","authors":"Navuday Sharma, M. Alam, Y. Moullec, Hassan Malik, M. Bennis, Sven Pärand","doi":"10.1109/WCNCW.2019.8902898","DOIUrl":null,"url":null,"abstract":"uRLLC (ultra-Reliable Low Latency Communications) requires a new paradigm in 5G cellular networks to satisfy extreme latency and reliability thresholds. Further, such constraints have a wide range due to different use case scenarios. Consequently, how to configure suitable radio frame structure that matches to the latency and reliability requirements of the given use-case is an open question. This article addresses the above-mentioned issue and provides a preliminary investigation and a feasible solution by exploiting antenna port selection index (APSI) calculated using fuzzy logic algorithm, which is further communicated through physical uplink control channel. Closed-form expressions of outage probability for the number of users, under given latency and reliability constraints have been provided with the mathematical proof and the results were simulated based on the prior availability of APSI. It is shown that outage probability improves up to 30% in case of dynamic radio frame configuration.","PeriodicalId":121352,"journal":{"name":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","volume":"17 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Radio Frame Configuration by Exploiting Uplink Control Channel for URLLC\",\"authors\":\"Navuday Sharma, M. Alam, Y. Moullec, Hassan Malik, M. Bennis, Sven Pärand\",\"doi\":\"10.1109/WCNCW.2019.8902898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"uRLLC (ultra-Reliable Low Latency Communications) requires a new paradigm in 5G cellular networks to satisfy extreme latency and reliability thresholds. Further, such constraints have a wide range due to different use case scenarios. Consequently, how to configure suitable radio frame structure that matches to the latency and reliability requirements of the given use-case is an open question. This article addresses the above-mentioned issue and provides a preliminary investigation and a feasible solution by exploiting antenna port selection index (APSI) calculated using fuzzy logic algorithm, which is further communicated through physical uplink control channel. Closed-form expressions of outage probability for the number of users, under given latency and reliability constraints have been provided with the mathematical proof and the results were simulated based on the prior availability of APSI. It is shown that outage probability improves up to 30% in case of dynamic radio frame configuration.\",\"PeriodicalId\":121352,\"journal\":{\"name\":\"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)\",\"volume\":\"17 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNCW.2019.8902898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2019.8902898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Radio Frame Configuration by Exploiting Uplink Control Channel for URLLC
uRLLC (ultra-Reliable Low Latency Communications) requires a new paradigm in 5G cellular networks to satisfy extreme latency and reliability thresholds. Further, such constraints have a wide range due to different use case scenarios. Consequently, how to configure suitable radio frame structure that matches to the latency and reliability requirements of the given use-case is an open question. This article addresses the above-mentioned issue and provides a preliminary investigation and a feasible solution by exploiting antenna port selection index (APSI) calculated using fuzzy logic algorithm, which is further communicated through physical uplink control channel. Closed-form expressions of outage probability for the number of users, under given latency and reliability constraints have been provided with the mathematical proof and the results were simulated based on the prior availability of APSI. It is shown that outage probability improves up to 30% in case of dynamic radio frame configuration.