Yohan Chon, N. Lane, Yunjong Kim, Feng Zhao, H. Cha
{"title":"了解以地点为中心的群体感知的覆盖范围和可扩展性","authors":"Yohan Chon, N. Lane, Yunjong Kim, Feng Zhao, H. Cha","doi":"10.1145/2493432.2493498","DOIUrl":null,"url":null,"abstract":"Crowd-enabled place-centric systems gather and reason over large mobile sensor datasets and target everyday user locations (such as stores, workplaces, and restaurants). Such systems are transforming various consumer services (for example, local search) and data-driven organizations (city planning). As the demand for these systems increases, our understanding of how to design and deploy successful crowdsensing systems must improve. In this paper, we present a systematic study of the coverage and scaling properties of place-centric crowdsensing. During a two-month deployment, we collected smartphone sensor data from 85 participants using a representative crowdsensing system that captures 48,000 different place visits. Our analysis of this dataset examines issues of core interest to place-centric crowdsensing, including place-temporal coverage, the relationship between the user population and coverage, privacy concerns, and the characterization of the collected data. Collectively, our findings provide valuable insights to guide the building of future place-centric crowdsensing systems and applications.","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":"{\"title\":\"Understanding the coverage and scalability of place-centric crowdsensing\",\"authors\":\"Yohan Chon, N. Lane, Yunjong Kim, Feng Zhao, H. Cha\",\"doi\":\"10.1145/2493432.2493498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowd-enabled place-centric systems gather and reason over large mobile sensor datasets and target everyday user locations (such as stores, workplaces, and restaurants). Such systems are transforming various consumer services (for example, local search) and data-driven organizations (city planning). As the demand for these systems increases, our understanding of how to design and deploy successful crowdsensing systems must improve. In this paper, we present a systematic study of the coverage and scaling properties of place-centric crowdsensing. During a two-month deployment, we collected smartphone sensor data from 85 participants using a representative crowdsensing system that captures 48,000 different place visits. Our analysis of this dataset examines issues of core interest to place-centric crowdsensing, including place-temporal coverage, the relationship between the user population and coverage, privacy concerns, and the characterization of the collected data. Collectively, our findings provide valuable insights to guide the building of future place-centric crowdsensing systems and applications.\",\"PeriodicalId\":262104,\"journal\":{\"name\":\"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"136\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493432.2493498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493432.2493498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding the coverage and scalability of place-centric crowdsensing
Crowd-enabled place-centric systems gather and reason over large mobile sensor datasets and target everyday user locations (such as stores, workplaces, and restaurants). Such systems are transforming various consumer services (for example, local search) and data-driven organizations (city planning). As the demand for these systems increases, our understanding of how to design and deploy successful crowdsensing systems must improve. In this paper, we present a systematic study of the coverage and scaling properties of place-centric crowdsensing. During a two-month deployment, we collected smartphone sensor data from 85 participants using a representative crowdsensing system that captures 48,000 different place visits. Our analysis of this dataset examines issues of core interest to place-centric crowdsensing, including place-temporal coverage, the relationship between the user population and coverage, privacy concerns, and the characterization of the collected data. Collectively, our findings provide valuable insights to guide the building of future place-centric crowdsensing systems and applications.