{"title":"最大化RTRL的零误差密度","authors":"L. Alexandre","doi":"10.1109/ISSPIT.2008.4775679","DOIUrl":null,"url":null,"abstract":"A new learning principle was introduced recently called the Zero-Error Density Maximization (Z-EDM) and was proposed in the framework of MLP backpropagation. In this paper we present the adaptation of this principle to online learning in recurrent neural networks, more precisely, to the Real Time Recurrent Learning (RTRL) approach. We show how to modify the RTRL learning algorithm in order to make it learn using Z-EDM criteria by using a sliding time window of previous error values. We present experiments showing that this new approach improves the convergence rate of the RNNs and improves the prediction performance in time series forecast.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximizing the Zero-Error Density for RTRL\",\"authors\":\"L. Alexandre\",\"doi\":\"10.1109/ISSPIT.2008.4775679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new learning principle was introduced recently called the Zero-Error Density Maximization (Z-EDM) and was proposed in the framework of MLP backpropagation. In this paper we present the adaptation of this principle to online learning in recurrent neural networks, more precisely, to the Real Time Recurrent Learning (RTRL) approach. We show how to modify the RTRL learning algorithm in order to make it learn using Z-EDM criteria by using a sliding time window of previous error values. We present experiments showing that this new approach improves the convergence rate of the RNNs and improves the prediction performance in time series forecast.\",\"PeriodicalId\":213756,\"journal\":{\"name\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2008.4775679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近提出了一种新的学习原理,称为零误差密度最大化(Z-EDM),并在MLP反向传播框架下提出。在本文中,我们提出了将这一原理应用于递归神经网络的在线学习,更准确地说,是应用于实时递归学习(RTRL)方法。我们展示了如何修改RTRL学习算法,以便通过使用先前误差值的滑动时间窗口使其使用Z-EDM标准进行学习。实验表明,该方法提高了rnn的收敛速度,提高了时间序列预测的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximizing the Zero-Error Density for RTRL
A new learning principle was introduced recently called the Zero-Error Density Maximization (Z-EDM) and was proposed in the framework of MLP backpropagation. In this paper we present the adaptation of this principle to online learning in recurrent neural networks, more precisely, to the Real Time Recurrent Learning (RTRL) approach. We show how to modify the RTRL learning algorithm in order to make it learn using Z-EDM criteria by using a sliding time window of previous error values. We present experiments showing that this new approach improves the convergence rate of the RNNs and improves the prediction performance in time series forecast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial signals addition for reducing PAPR of OFDM systems Iris Recognition System Using Combined Colour Statistics An Implementation of the Blowfish Cryptosystem Bspline based Wavelets with Lifting Implementation Advanced Bandwidth Brokering Architecture in PLC Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1