{"title":"共享:soh感知重构,提高大型电池组的交付能力","authors":"Liang He, Y. Gu, Ting Zhu, Cong Liu, K. Shin","doi":"10.1145/2735960.2735967","DOIUrl":null,"url":null,"abstract":"Unbalanced battery cells are known to significantly degrade the performance and reliability of a large-scale battery system. In this paper, we exploit emerging reconfigurable battery packs to mitigate the cell imbalance via the joint consideration of system reconfigurability and State-of-Health (SoH) of cells. Via empirical measurements and validation, we observe that a significantly larger amount of capacity can be delivered when cells with similar SoH levels are connected in series during discharging, which in turn extends the system operation time. Based on this observation, we propose two SoH-aware reconfiguration algorithms focusing on fully and partially reconfigurable battery packs, and prove their (near) optimality. We evaluate the proposed SoH-aware reconfiguration algorithms using both experiments and simulations. The algorithms are shown to deliver about 10--30% more capacity than SoH-oblivious configuration approaches.","PeriodicalId":344612,"journal":{"name":"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"SHARE: SoH-aware reconfiguration to enhance deliverable capacity of large-scale battery packs\",\"authors\":\"Liang He, Y. Gu, Ting Zhu, Cong Liu, K. Shin\",\"doi\":\"10.1145/2735960.2735967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unbalanced battery cells are known to significantly degrade the performance and reliability of a large-scale battery system. In this paper, we exploit emerging reconfigurable battery packs to mitigate the cell imbalance via the joint consideration of system reconfigurability and State-of-Health (SoH) of cells. Via empirical measurements and validation, we observe that a significantly larger amount of capacity can be delivered when cells with similar SoH levels are connected in series during discharging, which in turn extends the system operation time. Based on this observation, we propose two SoH-aware reconfiguration algorithms focusing on fully and partially reconfigurable battery packs, and prove their (near) optimality. We evaluate the proposed SoH-aware reconfiguration algorithms using both experiments and simulations. The algorithms are shown to deliver about 10--30% more capacity than SoH-oblivious configuration approaches.\",\"PeriodicalId\":344612,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2735960.2735967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2735960.2735967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SHARE: SoH-aware reconfiguration to enhance deliverable capacity of large-scale battery packs
Unbalanced battery cells are known to significantly degrade the performance and reliability of a large-scale battery system. In this paper, we exploit emerging reconfigurable battery packs to mitigate the cell imbalance via the joint consideration of system reconfigurability and State-of-Health (SoH) of cells. Via empirical measurements and validation, we observe that a significantly larger amount of capacity can be delivered when cells with similar SoH levels are connected in series during discharging, which in turn extends the system operation time. Based on this observation, we propose two SoH-aware reconfiguration algorithms focusing on fully and partially reconfigurable battery packs, and prove their (near) optimality. We evaluate the proposed SoH-aware reconfiguration algorithms using both experiments and simulations. The algorithms are shown to deliver about 10--30% more capacity than SoH-oblivious configuration approaches.