基于原位还原氧化石墨烯的聚合物纳米复合材料在新型混合太阳能电池中的光伏应用

A. Giuri, S. Masi, S. Colella, A. Listorti, A. Rizzo, G. Gigli, A. Liscio, E. Treossi, V. Palermo, S. Rella, C. Malitesta, C. E. Corcione
{"title":"基于原位还原氧化石墨烯的聚合物纳米复合材料在新型混合太阳能电池中的光伏应用","authors":"A. Giuri, S. Masi, S. Colella, A. Listorti, A. Rizzo, G. Gigli, A. Liscio, E. Treossi, V. Palermo, S. Rella, C. Malitesta, C. E. Corcione","doi":"10.1109/NANOFIM.2015.8425328","DOIUrl":null,"url":null,"abstract":"Polymeric nanocomposites based on UV in situ reduced graphene oxide were developed in order to enhance the electrical conductivity of polymeric matrices for the realization of highly efficient solid-state hybrid solar cells based on organometal trihalide perovskite absorbers. Graphene is a 2-D single layer of sp2-bonded carbon atoms characterized by high specific surface area, Young's modulus, thermal stability, mobility of charge carriers and plus fascinating transport phenomena such as the quantum Hall effect. Among several developed methods to prepare graphene, including chemical vapor deposition (CVD) and mechanical exfoliation, the chemical reduction of graphene oxide (GO) is regarded as the most promising for future implementation in large-scale production. In this work, a GO prepared by a modified Hummers method was used and reduced by a green method based on UV treatment in inert atmosphere. Graphene oxide reduction was monitored evaluating the change of absorption peak by UV-visible spectroscopy and X-ray photoelectron spectroscopy (XPS), monitoring the decrease of the oxygen groups linked to carbon. Dilute nanocomposites suspensions were then prepared by optimizing the dispersion procedure of GO in the polymeric matrix as function of process parameters, i.e. time, temperature and composition. Nanocomposite films were also realized by spin coating on different substrates and characterized by several techniques. At last the film showing the better properties was implemented in a hybrid solar cell to evaluate the increase of electrical conductivity and power conversion efficiency.","PeriodicalId":413629,"journal":{"name":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Polymer Nanocomposites based on in situ reduced graphene oxide for photovoltaic applications in innovative hybrid solar cells\",\"authors\":\"A. Giuri, S. Masi, S. Colella, A. Listorti, A. Rizzo, G. Gigli, A. Liscio, E. Treossi, V. Palermo, S. Rella, C. Malitesta, C. E. Corcione\",\"doi\":\"10.1109/NANOFIM.2015.8425328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymeric nanocomposites based on UV in situ reduced graphene oxide were developed in order to enhance the electrical conductivity of polymeric matrices for the realization of highly efficient solid-state hybrid solar cells based on organometal trihalide perovskite absorbers. Graphene is a 2-D single layer of sp2-bonded carbon atoms characterized by high specific surface area, Young's modulus, thermal stability, mobility of charge carriers and plus fascinating transport phenomena such as the quantum Hall effect. Among several developed methods to prepare graphene, including chemical vapor deposition (CVD) and mechanical exfoliation, the chemical reduction of graphene oxide (GO) is regarded as the most promising for future implementation in large-scale production. In this work, a GO prepared by a modified Hummers method was used and reduced by a green method based on UV treatment in inert atmosphere. Graphene oxide reduction was monitored evaluating the change of absorption peak by UV-visible spectroscopy and X-ray photoelectron spectroscopy (XPS), monitoring the decrease of the oxygen groups linked to carbon. Dilute nanocomposites suspensions were then prepared by optimizing the dispersion procedure of GO in the polymeric matrix as function of process parameters, i.e. time, temperature and composition. Nanocomposite films were also realized by spin coating on different substrates and characterized by several techniques. At last the film showing the better properties was implemented in a hybrid solar cell to evaluate the increase of electrical conductivity and power conversion efficiency.\",\"PeriodicalId\":413629,\"journal\":{\"name\":\"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOFIM.2015.8425328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOFIM.2015.8425328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高聚合物基体的导电性,实现基于有机金属三卤化物钙钛矿吸收体的高效固态杂化太阳能电池,开发了基于紫外原位还原氧化石墨烯的聚合物纳米复合材料。石墨烯是一种二维单层sp2键碳原子,具有高比表面积、杨氏模量、热稳定性、载流子的迁移性以及量子霍尔效应等令人着迷的输运现象。在几种制备石墨烯的方法中,包括化学气相沉积(CVD)和机械剥离,氧化石墨烯(GO)的化学还原被认为是最有希望在未来大规模生产中实施的方法。本文采用改进Hummers法制备的氧化石墨烯,并在惰性气氛中采用基于紫外处理的绿色方法还原氧化石墨烯。通过紫外可见光谱和x射线光电子能谱(XPS)监测氧化石墨烯的还原,评估吸收峰的变化,监测碳连接的氧基团的减少。通过优化氧化石墨烯在聚合物基体中的分散过程,以时间、温度和组分为参数,制备了稀纳米复合悬浮液。在不同的衬底上采用自旋镀膜的方法制备了纳米复合薄膜,并对其进行了表征。最后将性能较好的薄膜应用于混合太阳能电池中,以评价其电导率和功率转换效率的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polymer Nanocomposites based on in situ reduced graphene oxide for photovoltaic applications in innovative hybrid solar cells
Polymeric nanocomposites based on UV in situ reduced graphene oxide were developed in order to enhance the electrical conductivity of polymeric matrices for the realization of highly efficient solid-state hybrid solar cells based on organometal trihalide perovskite absorbers. Graphene is a 2-D single layer of sp2-bonded carbon atoms characterized by high specific surface area, Young's modulus, thermal stability, mobility of charge carriers and plus fascinating transport phenomena such as the quantum Hall effect. Among several developed methods to prepare graphene, including chemical vapor deposition (CVD) and mechanical exfoliation, the chemical reduction of graphene oxide (GO) is regarded as the most promising for future implementation in large-scale production. In this work, a GO prepared by a modified Hummers method was used and reduced by a green method based on UV treatment in inert atmosphere. Graphene oxide reduction was monitored evaluating the change of absorption peak by UV-visible spectroscopy and X-ray photoelectron spectroscopy (XPS), monitoring the decrease of the oxygen groups linked to carbon. Dilute nanocomposites suspensions were then prepared by optimizing the dispersion procedure of GO in the polymeric matrix as function of process parameters, i.e. time, temperature and composition. Nanocomposite films were also realized by spin coating on different substrates and characterized by several techniques. At last the film showing the better properties was implemented in a hybrid solar cell to evaluate the increase of electrical conductivity and power conversion efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Air/methane mixture ignition with Multi-Walled Carbon Nanotubes (MWCNTs) and comparison with spark ignition Effective Targeting of Hepatocellular Carcinoma through Glypican-3 Ligand Peptide Functionalization of Silica Nanoparticles Exploring CVD techniques for the growth of novel carbon nanostructures Highly Improved Cytocompatibility of Halloysite Nanotubes through Polymeric Surface Modification Carbon Nanotube Polymer Composites for High Performance Strain Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1