基于多高斯核的L2空间在线学习

Motoya Ohnishi, M. Yukawa
{"title":"基于多高斯核的L2空间在线学习","authors":"Motoya Ohnishi, M. Yukawa","doi":"10.23919/EUSIPCO.2017.8081478","DOIUrl":null,"url":null,"abstract":"We present a novel online learning paradigm for nonlinear function estimation based on iterative orthogonal projections in an L2 space reflecting the stochastic property of input signals. An online algorithm is built upon the fact that any finite dimensional subspace has a reproducing kernel, which is given in terms of the Gram matrix of its basis. The basis used in the present study involves multiple Gaussian kernels. The sequence generated by the algorithm is expected to approach towards the best approximation, in the L2-norm sense, of the nonlinear function to be estimated. This is in sharp contrast to the conventional kernel adaptive filtering paradigm because the best approximation in the reproducing kernel Hilbert space generally differs from the minimum mean squared error estimator over the subspace (Yukawa and Müller 2016). Numerical examples show the efficacy of the proposed approach.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Online learning in L2 space with multiple Gaussian kernels\",\"authors\":\"Motoya Ohnishi, M. Yukawa\",\"doi\":\"10.23919/EUSIPCO.2017.8081478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel online learning paradigm for nonlinear function estimation based on iterative orthogonal projections in an L2 space reflecting the stochastic property of input signals. An online algorithm is built upon the fact that any finite dimensional subspace has a reproducing kernel, which is given in terms of the Gram matrix of its basis. The basis used in the present study involves multiple Gaussian kernels. The sequence generated by the algorithm is expected to approach towards the best approximation, in the L2-norm sense, of the nonlinear function to be estimated. This is in sharp contrast to the conventional kernel adaptive filtering paradigm because the best approximation in the reproducing kernel Hilbert space generally differs from the minimum mean squared error estimator over the subspace (Yukawa and Müller 2016). Numerical examples show the efficacy of the proposed approach.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种基于L2空间中反映输入信号随机特性的迭代正交投影的非线性函数估计的新的在线学习范式。一个在线算法是建立在任何有限维子空间都有一个复制核的基础上的,这个复制核是用它的基的格拉姆矩阵给出的。在本研究中使用的基础涉及多个高斯核。在l2范数意义上,期望算法生成的序列接近要估计的非线性函数的最佳近似值。这与传统的核自适应滤波范例形成鲜明对比,因为再现核希尔伯特空间中的最佳近似值通常不同于子空间上的最小均方误差估计量(Yukawa and m ller 2016)。数值算例表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online learning in L2 space with multiple Gaussian kernels
We present a novel online learning paradigm for nonlinear function estimation based on iterative orthogonal projections in an L2 space reflecting the stochastic property of input signals. An online algorithm is built upon the fact that any finite dimensional subspace has a reproducing kernel, which is given in terms of the Gram matrix of its basis. The basis used in the present study involves multiple Gaussian kernels. The sequence generated by the algorithm is expected to approach towards the best approximation, in the L2-norm sense, of the nonlinear function to be estimated. This is in sharp contrast to the conventional kernel adaptive filtering paradigm because the best approximation in the reproducing kernel Hilbert space generally differs from the minimum mean squared error estimator over the subspace (Yukawa and Müller 2016). Numerical examples show the efficacy of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1