RBF算法及其在多河段水质模拟中的应用

Chang-jun Zhu, Xiujuan Zhao
{"title":"RBF算法及其在多河段水质模拟中的应用","authors":"Chang-jun Zhu, Xiujuan Zhao","doi":"10.1109/CINC.2009.139","DOIUrl":null,"url":null,"abstract":"Based on the theory and method of neural network, and analysis of multi-reach water quality model, a model of RBF water quality model was presented, the model was trained and examined with the data of water quality of Fuyang river in Handan city. The results indicate that the model is more accurate than traditional model and is feasible for water quality simulation.","PeriodicalId":173506,"journal":{"name":"2009 International Conference on Computational Intelligence and Natural Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"RBF Algorithm and its Application in Multi-Reach Water Quality Simulation\",\"authors\":\"Chang-jun Zhu, Xiujuan Zhao\",\"doi\":\"10.1109/CINC.2009.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the theory and method of neural network, and analysis of multi-reach water quality model, a model of RBF water quality model was presented, the model was trained and examined with the data of water quality of Fuyang river in Handan city. The results indicate that the model is more accurate than traditional model and is feasible for water quality simulation.\",\"PeriodicalId\":173506,\"journal\":{\"name\":\"2009 International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2009.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2009.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于神经网络理论和方法,在分析多河段水质模型的基础上,提出了一种RBF水质模型模型,并利用邯郸市阜阳河水质数据对该模型进行了训练和检验。结果表明,该模型比传统模型精度更高,可用于水质模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RBF Algorithm and its Application in Multi-Reach Water Quality Simulation
Based on the theory and method of neural network, and analysis of multi-reach water quality model, a model of RBF water quality model was presented, the model was trained and examined with the data of water quality of Fuyang river in Handan city. The results indicate that the model is more accurate than traditional model and is feasible for water quality simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Detection Algorithm for Uneven Lighting Image Based on Vision Theory Independent Global Constraints Web Service Composition Optimization Based on Color Petri Net Summarization for Internet News Based on Clustering Algorithm Some Characterizations about 4-band Symmetric Cardinal Orthogonal Scaling Function Nutritional Diet Decision Using Multi-objective Difference Evolutionary Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1