心律失常分类数据属性约简的比较研究

A. G. Persada, N. A. Setiawan, H. A. Nugroho
{"title":"心律失常分类数据属性约简的比较研究","authors":"A. G. Persada, N. A. Setiawan, H. A. Nugroho","doi":"10.1109/ICITEED.2013.6676213","DOIUrl":null,"url":null,"abstract":"The research presented in this paper is focused on comparative study of various attribute selections as one of preprocessing methods used in world machine learning applications. Using UCI arrhythmia dataset, nine combination of attribute selection, based on search methods (Best First, Genetic Search and PSO Search) and attribute evaluator (CfsSubsetEval, ConsistencySubsetEval, and RSARSubsetEval) are tested and compared. Those data of attribute reduction results are then classified by using eight classifiers (Naive Bayes, Bayes Net, MLP Classifier, RBF Classifier, Jrip, PART, J48 and Random Forest). The best overall results are achieved by the combination of Best First and CsfSubsetEval which has the accuracy of 81% when it is tested with RBF Classifier. PSO Search methods was also found not very effective to generate high quality subsets.","PeriodicalId":204082,"journal":{"name":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparative study of attribute reduction on arrhythmia classification dataset\",\"authors\":\"A. G. Persada, N. A. Setiawan, H. A. Nugroho\",\"doi\":\"10.1109/ICITEED.2013.6676213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research presented in this paper is focused on comparative study of various attribute selections as one of preprocessing methods used in world machine learning applications. Using UCI arrhythmia dataset, nine combination of attribute selection, based on search methods (Best First, Genetic Search and PSO Search) and attribute evaluator (CfsSubsetEval, ConsistencySubsetEval, and RSARSubsetEval) are tested and compared. Those data of attribute reduction results are then classified by using eight classifiers (Naive Bayes, Bayes Net, MLP Classifier, RBF Classifier, Jrip, PART, J48 and Random Forest). The best overall results are achieved by the combination of Best First and CsfSubsetEval which has the accuracy of 81% when it is tested with RBF Classifier. PSO Search methods was also found not very effective to generate high quality subsets.\",\"PeriodicalId\":204082,\"journal\":{\"name\":\"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITEED.2013.6676213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2013.6676213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文的研究重点是比较研究各种属性选择作为世界机器学习应用中的预处理方法之一。利用UCI心律失常数据,对基于搜索方法(Best First、Genetic search和PSO search)和属性评估器(CfsSubsetEval、ConsistencySubsetEval和RSARSubsetEval)的9种属性选择组合进行了测试和比较。然后使用8种分类器(朴素贝叶斯、贝叶斯网络、MLP分类器、RBF分类器、Jrip、PART、J48和随机森林)对属性约简结果进行分类。采用best First和CsfSubsetEval相结合的方法,在RBF分类器中获得了最佳的综合结果,准确率达到81%。粒子群搜索方法在生成高质量子集方面也不是很有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative study of attribute reduction on arrhythmia classification dataset
The research presented in this paper is focused on comparative study of various attribute selections as one of preprocessing methods used in world machine learning applications. Using UCI arrhythmia dataset, nine combination of attribute selection, based on search methods (Best First, Genetic Search and PSO Search) and attribute evaluator (CfsSubsetEval, ConsistencySubsetEval, and RSARSubsetEval) are tested and compared. Those data of attribute reduction results are then classified by using eight classifiers (Naive Bayes, Bayes Net, MLP Classifier, RBF Classifier, Jrip, PART, J48 and Random Forest). The best overall results are achieved by the combination of Best First and CsfSubsetEval which has the accuracy of 81% when it is tested with RBF Classifier. PSO Search methods was also found not very effective to generate high quality subsets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal unit commitment solution using genetic algorithm combined with the principle of tabu search and priority list method Using estimated arithmetic means of accuracies to select features for face-based gender classification Analysis of factors influencing the mobile technology acceptance for library information services: Conceptual model News recommendation in Indonesian language based on user click behavior A kinetic energy-based feature for unsupervised motion clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1