应用自适应神经网络PID控制器控制六自由度机械臂

Mengdi Wu, Bing-Gang Jhong, Mei-Yung Chen
{"title":"应用自适应神经网络PID控制器控制六自由度机械臂","authors":"Mengdi Wu, Bing-Gang Jhong, Mei-Yung Chen","doi":"10.1109/ICSSE55923.2022.9948251","DOIUrl":null,"url":null,"abstract":"This thesis proposes a novel controller design for a six-axes robotic arm, based on the neural network frame learning mechanism. The controller structure includes five parts. Firstly, we get the training dataset from the actual construction of the six-axis robotic arm. Secondly, the training method of the neural network is based on adaptively adjust the weight value and error between the input layer and the hidden layer. Thirdly, put the training dataset as input of the neural network to train the model. Finally, we use Lyapunov theory to guarantee the stability of the controller design for a six-axis robotic arm, and compare it with PID controller design.","PeriodicalId":220599,"journal":{"name":"2022 International Conference on System Science and Engineering (ICSSE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apply Adaptive Neural Network PID Controllers for a 6DOF Robotic Arm\",\"authors\":\"Mengdi Wu, Bing-Gang Jhong, Mei-Yung Chen\",\"doi\":\"10.1109/ICSSE55923.2022.9948251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This thesis proposes a novel controller design for a six-axes robotic arm, based on the neural network frame learning mechanism. The controller structure includes five parts. Firstly, we get the training dataset from the actual construction of the six-axis robotic arm. Secondly, the training method of the neural network is based on adaptively adjust the weight value and error between the input layer and the hidden layer. Thirdly, put the training dataset as input of the neural network to train the model. Finally, we use Lyapunov theory to guarantee the stability of the controller design for a six-axis robotic arm, and compare it with PID controller design.\",\"PeriodicalId\":220599,\"journal\":{\"name\":\"2022 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE55923.2022.9948251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE55923.2022.9948251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于神经网络框架学习机制的六轴机械臂控制器设计方法。控制器结构包括五个部分。首先,从六轴机械臂的实际构造中得到训练数据集。其次,神经网络的训练方法是基于自适应调整输入层和隐藏层之间的权值和误差。第三,将训练数据集作为神经网络的输入,对模型进行训练。最后,利用李雅普诺夫理论保证了六轴机械臂控制器设计的稳定性,并与PID控制器设计进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Apply Adaptive Neural Network PID Controllers for a 6DOF Robotic Arm
This thesis proposes a novel controller design for a six-axes robotic arm, based on the neural network frame learning mechanism. The controller structure includes five parts. Firstly, we get the training dataset from the actual construction of the six-axis robotic arm. Secondly, the training method of the neural network is based on adaptively adjust the weight value and error between the input layer and the hidden layer. Thirdly, put the training dataset as input of the neural network to train the model. Finally, we use Lyapunov theory to guarantee the stability of the controller design for a six-axis robotic arm, and compare it with PID controller design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mathematical Lung Cancer Radiotherapy Model – Computational Simulation and Analysis A Finite-Time Trajectory Tracking Control for a Hexa-rotor with Uncertainty and Actuator Fault A Prediction for the Cluster Centers in Unlabeled Data Optimal EEG Data Segmentation in LSTM Networks for Learning Neural Dynamics of ADHD Genetic Algorithm PID Control of Second-Order Analog Circuit System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1