NeurIPS'22跨域MetaDL竞赛:设计和基线结果

Dustin Carri'on-Ojeda, Hong Chen, Adrian El Baz, Sergio Escalera, Chaoyu Guan, Isabelle M Guyon, I. Ullah, Xin Wang, Wenwu Zhu
{"title":"NeurIPS'22跨域MetaDL竞赛:设计和基线结果","authors":"Dustin Carri'on-Ojeda, Hong Chen, Adrian El Baz, Sergio Escalera, Chaoyu Guan, Isabelle M Guyon, I. Ullah, Xin Wang, Wenwu Zhu","doi":"10.48550/arXiv.2208.14686","DOIUrl":null,"url":null,"abstract":"We present the design and baseline results for a new challenge in the ChaLearn meta-learning series, accepted at NeurIPS'22, focusing on\"cross-domain\"meta-learning. Meta-learning aims to leverage experience gained from previous tasks to solve new tasks efficiently (i.e., with better performance, little training data, and/or modest computational resources). While previous challenges in the series focused on within-domain few-shot learning problems, with the aim of learning efficiently N-way k-shot tasks (i.e., N class classification problems with k training examples), this competition challenges the participants to solve\"any-way\"and\"any-shot\"problems drawn from various domains (healthcare, ecology, biology, manufacturing, and others), chosen for their humanitarian and societal impact. To that end, we created Meta-Album, a meta-dataset of 40 image classification datasets from 10 domains, from which we carve out tasks with any number of\"ways\"(within the range 2-20) and any number of\"shots\"(within the range 1-20). The competition is with code submission, fully blind-tested on the CodaLab challenge platform. The code of the winners will be open-sourced, enabling the deployment of automated machine learning solutions for few-shot image classification across several domains.","PeriodicalId":435618,"journal":{"name":"Meta-Knowledge Transfer @ ECML/PKDD","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"NeurIPS'22 Cross-Domain MetaDL competition: Design and baseline results\",\"authors\":\"Dustin Carri'on-Ojeda, Hong Chen, Adrian El Baz, Sergio Escalera, Chaoyu Guan, Isabelle M Guyon, I. Ullah, Xin Wang, Wenwu Zhu\",\"doi\":\"10.48550/arXiv.2208.14686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the design and baseline results for a new challenge in the ChaLearn meta-learning series, accepted at NeurIPS'22, focusing on\\\"cross-domain\\\"meta-learning. Meta-learning aims to leverage experience gained from previous tasks to solve new tasks efficiently (i.e., with better performance, little training data, and/or modest computational resources). While previous challenges in the series focused on within-domain few-shot learning problems, with the aim of learning efficiently N-way k-shot tasks (i.e., N class classification problems with k training examples), this competition challenges the participants to solve\\\"any-way\\\"and\\\"any-shot\\\"problems drawn from various domains (healthcare, ecology, biology, manufacturing, and others), chosen for their humanitarian and societal impact. To that end, we created Meta-Album, a meta-dataset of 40 image classification datasets from 10 domains, from which we carve out tasks with any number of\\\"ways\\\"(within the range 2-20) and any number of\\\"shots\\\"(within the range 1-20). The competition is with code submission, fully blind-tested on the CodaLab challenge platform. The code of the winners will be open-sourced, enabling the deployment of automated machine learning solutions for few-shot image classification across several domains.\",\"PeriodicalId\":435618,\"journal\":{\"name\":\"Meta-Knowledge Transfer @ ECML/PKDD\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meta-Knowledge Transfer @ ECML/PKDD\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.14686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta-Knowledge Transfer @ ECML/PKDD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.14686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了ChaLearn元学习系列的新挑战的设计和基线结果,该系列在NeurIPS'22上被接受,专注于“跨领域”元学习。元学习旨在利用从以前的任务中获得的经验来有效地解决新任务(即,具有更好的性能,较少的训练数据和/或适度的计算资源)。虽然该系列之前的挑战集中在领域内的几次学习问题上,目的是有效地学习N-way k-shot任务(即,使用k个训练示例的N类分类问题),但本次比赛挑战参与者解决来自各个领域(医疗保健,生态学,生物学,制造业等)的“任意方式”和“任意射击”问题,选择它们的人道主义和社会影响。为此,我们创建了Meta-Album,这是一个由来自10个领域的40个图像分类数据集组成的元数据集,从中我们划分出具有任意数量的“方法”(范围在2-20之间)和任意数量的“镜头”(范围在1-20之间)的任务。比赛包括代码提交,在CodaLab挑战平台上进行完全盲测。获奖者的代码将是开源的,从而可以部署自动化机器学习解决方案,用于跨多个领域的少量图像分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NeurIPS'22 Cross-Domain MetaDL competition: Design and baseline results
We present the design and baseline results for a new challenge in the ChaLearn meta-learning series, accepted at NeurIPS'22, focusing on"cross-domain"meta-learning. Meta-learning aims to leverage experience gained from previous tasks to solve new tasks efficiently (i.e., with better performance, little training data, and/or modest computational resources). While previous challenges in the series focused on within-domain few-shot learning problems, with the aim of learning efficiently N-way k-shot tasks (i.e., N class classification problems with k training examples), this competition challenges the participants to solve"any-way"and"any-shot"problems drawn from various domains (healthcare, ecology, biology, manufacturing, and others), chosen for their humanitarian and societal impact. To that end, we created Meta-Album, a meta-dataset of 40 image classification datasets from 10 domains, from which we carve out tasks with any number of"ways"(within the range 2-20) and any number of"shots"(within the range 1-20). The competition is with code submission, fully blind-tested on the CodaLab challenge platform. The code of the winners will be open-sourced, enabling the deployment of automated machine learning solutions for few-shot image classification across several domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NeurIPS'22 Cross-Domain MetaDL competition: Design and baseline results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1