首页 > 最新文献

Meta-Knowledge Transfer @ ECML/PKDD最新文献

英文 中文
NeurIPS'22 Cross-Domain MetaDL competition: Design and baseline results NeurIPS'22跨域MetaDL竞赛:设计和基线结果
Pub Date : 2022-08-31 DOI: 10.48550/arXiv.2208.14686
Dustin Carri'on-Ojeda, Hong Chen, Adrian El Baz, Sergio Escalera, Chaoyu Guan, Isabelle M Guyon, I. Ullah, Xin Wang, Wenwu Zhu
We present the design and baseline results for a new challenge in the ChaLearn meta-learning series, accepted at NeurIPS'22, focusing on"cross-domain"meta-learning. Meta-learning aims to leverage experience gained from previous tasks to solve new tasks efficiently (i.e., with better performance, little training data, and/or modest computational resources). While previous challenges in the series focused on within-domain few-shot learning problems, with the aim of learning efficiently N-way k-shot tasks (i.e., N class classification problems with k training examples), this competition challenges the participants to solve"any-way"and"any-shot"problems drawn from various domains (healthcare, ecology, biology, manufacturing, and others), chosen for their humanitarian and societal impact. To that end, we created Meta-Album, a meta-dataset of 40 image classification datasets from 10 domains, from which we carve out tasks with any number of"ways"(within the range 2-20) and any number of"shots"(within the range 1-20). The competition is with code submission, fully blind-tested on the CodaLab challenge platform. The code of the winners will be open-sourced, enabling the deployment of automated machine learning solutions for few-shot image classification across several domains.
我们提出了ChaLearn元学习系列的新挑战的设计和基线结果,该系列在NeurIPS'22上被接受,专注于“跨领域”元学习。元学习旨在利用从以前的任务中获得的经验来有效地解决新任务(即,具有更好的性能,较少的训练数据和/或适度的计算资源)。虽然该系列之前的挑战集中在领域内的几次学习问题上,目的是有效地学习N-way k-shot任务(即,使用k个训练示例的N类分类问题),但本次比赛挑战参与者解决来自各个领域(医疗保健,生态学,生物学,制造业等)的“任意方式”和“任意射击”问题,选择它们的人道主义和社会影响。为此,我们创建了Meta-Album,这是一个由来自10个领域的40个图像分类数据集组成的元数据集,从中我们划分出具有任意数量的“方法”(范围在2-20之间)和任意数量的“镜头”(范围在1-20之间)的任务。比赛包括代码提交,在CodaLab挑战平台上进行完全盲测。获奖者的代码将是开源的,从而可以部署自动化机器学习解决方案,用于跨多个领域的少量图像分类。
{"title":"NeurIPS'22 Cross-Domain MetaDL competition: Design and baseline results","authors":"Dustin Carri'on-Ojeda, Hong Chen, Adrian El Baz, Sergio Escalera, Chaoyu Guan, Isabelle M Guyon, I. Ullah, Xin Wang, Wenwu Zhu","doi":"10.48550/arXiv.2208.14686","DOIUrl":"https://doi.org/10.48550/arXiv.2208.14686","url":null,"abstract":"We present the design and baseline results for a new challenge in the ChaLearn meta-learning series, accepted at NeurIPS'22, focusing on\"cross-domain\"meta-learning. Meta-learning aims to leverage experience gained from previous tasks to solve new tasks efficiently (i.e., with better performance, little training data, and/or modest computational resources). While previous challenges in the series focused on within-domain few-shot learning problems, with the aim of learning efficiently N-way k-shot tasks (i.e., N class classification problems with k training examples), this competition challenges the participants to solve\"any-way\"and\"any-shot\"problems drawn from various domains (healthcare, ecology, biology, manufacturing, and others), chosen for their humanitarian and societal impact. To that end, we created Meta-Album, a meta-dataset of 40 image classification datasets from 10 domains, from which we carve out tasks with any number of\"ways\"(within the range 2-20) and any number of\"shots\"(within the range 1-20). The competition is with code submission, fully blind-tested on the CodaLab challenge platform. The code of the winners will be open-sourced, enabling the deployment of automated machine learning solutions for few-shot image classification across several domains.","PeriodicalId":435618,"journal":{"name":"Meta-Knowledge Transfer @ ECML/PKDD","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121903297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Meta-Knowledge Transfer @ ECML/PKDD
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1