{"title":"基于hsc的支持向量机样本选择方法","authors":"Qing He, Ning Li, Zhongzhi Shi","doi":"10.1109/ICMLC.2010.5580974","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is a classification technique of machine learning based on statistical learning theory. A quadratic optimization problem needs to be solved in the algorithm, and with the increase of the samples, the time complexity will also increase. So it is necessary to shrink training sets to reduce the time complexity. A sample selection method for SVM is proposed in this paper. It is inspired from the Hyper surface classification (HSC), which is a universal classification method based on Jordan Curve Theorem, and there is no need for mapping from lower-dimensional space to higher-dimensional space. The experiments show that the algorithm shrinks training sets keeping the accuracy for unseen vectors high.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A HSC-based sample selection method for support vector machine\",\"authors\":\"Qing He, Ning Li, Zhongzhi Shi\",\"doi\":\"10.1109/ICMLC.2010.5580974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Machine (SVM) is a classification technique of machine learning based on statistical learning theory. A quadratic optimization problem needs to be solved in the algorithm, and with the increase of the samples, the time complexity will also increase. So it is necessary to shrink training sets to reduce the time complexity. A sample selection method for SVM is proposed in this paper. It is inspired from the Hyper surface classification (HSC), which is a universal classification method based on Jordan Curve Theorem, and there is no need for mapping from lower-dimensional space to higher-dimensional space. The experiments show that the algorithm shrinks training sets keeping the accuracy for unseen vectors high.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5580974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A HSC-based sample selection method for support vector machine
Support Vector Machine (SVM) is a classification technique of machine learning based on statistical learning theory. A quadratic optimization problem needs to be solved in the algorithm, and with the increase of the samples, the time complexity will also increase. So it is necessary to shrink training sets to reduce the time complexity. A sample selection method for SVM is proposed in this paper. It is inspired from the Hyper surface classification (HSC), which is a universal classification method based on Jordan Curve Theorem, and there is no need for mapping from lower-dimensional space to higher-dimensional space. The experiments show that the algorithm shrinks training sets keeping the accuracy for unseen vectors high.