{"title":"3U部署器(iPOD)结构动力学分析","authors":"M. Arshad, Rehan Mehmood, H. Khan","doi":"10.1109/ICASE54940.2021.9904095","DOIUrl":null,"url":null,"abstract":"During a rocket launch, satellites withstand large random dynamic forces due to vibrations that are transmitted from the launch vehicle. The deployer plays a critical role as the interface between the launch vehicle and CubeSat. The deployer minimizes potential interactions with the primary payload(s) on a launch vehicle by physically enclosing the CubeSat, and requiring that they be launched in a dormant “off” state. Apart from protecting the CubeSat from dynamic forces during launch, deployer also facilitates in deploying the satellite in an orbit. Finite element analysis is an important tool to analyze and check the structural integrity of the structural subsystem and its mechanical interfaces. In this study, the deployer for a 3U ICUBE-N is modelled and the finite element analysis has been done to assess the dynamic and static loading on iPOD structure, mainly manufactured of aluminum alloys. The frame of iPOD is inspected for stress concentration areas and modal frequencies, and the improvements in model are suggested, such as to ensure that deployer does not fail during mission.","PeriodicalId":300328,"journal":{"name":"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Analysis of 3U deployer (iPOD) Structure\",\"authors\":\"M. Arshad, Rehan Mehmood, H. Khan\",\"doi\":\"10.1109/ICASE54940.2021.9904095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During a rocket launch, satellites withstand large random dynamic forces due to vibrations that are transmitted from the launch vehicle. The deployer plays a critical role as the interface between the launch vehicle and CubeSat. The deployer minimizes potential interactions with the primary payload(s) on a launch vehicle by physically enclosing the CubeSat, and requiring that they be launched in a dormant “off” state. Apart from protecting the CubeSat from dynamic forces during launch, deployer also facilitates in deploying the satellite in an orbit. Finite element analysis is an important tool to analyze and check the structural integrity of the structural subsystem and its mechanical interfaces. In this study, the deployer for a 3U ICUBE-N is modelled and the finite element analysis has been done to assess the dynamic and static loading on iPOD structure, mainly manufactured of aluminum alloys. The frame of iPOD is inspected for stress concentration areas and modal frequencies, and the improvements in model are suggested, such as to ensure that deployer does not fail during mission.\",\"PeriodicalId\":300328,\"journal\":{\"name\":\"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASE54940.2021.9904095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASE54940.2021.9904095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
During a rocket launch, satellites withstand large random dynamic forces due to vibrations that are transmitted from the launch vehicle. The deployer plays a critical role as the interface between the launch vehicle and CubeSat. The deployer minimizes potential interactions with the primary payload(s) on a launch vehicle by physically enclosing the CubeSat, and requiring that they be launched in a dormant “off” state. Apart from protecting the CubeSat from dynamic forces during launch, deployer also facilitates in deploying the satellite in an orbit. Finite element analysis is an important tool to analyze and check the structural integrity of the structural subsystem and its mechanical interfaces. In this study, the deployer for a 3U ICUBE-N is modelled and the finite element analysis has been done to assess the dynamic and static loading on iPOD structure, mainly manufactured of aluminum alloys. The frame of iPOD is inspected for stress concentration areas and modal frequencies, and the improvements in model are suggested, such as to ensure that deployer does not fail during mission.