{"title":"关于Wasserstein质心的计算","authors":"Giovanni Puccetti, L. Rüschendorf, S. Vanduffel","doi":"10.2139/ssrn.3276147","DOIUrl":null,"url":null,"abstract":"Abstract The Wasserstein barycenter is an important notion in the analysis of high dimensional data with a broad range of applications in applied probability, economics, statistics, and in particular to clustering and image processing. In this paper, we state a general version of the equivalence of the Wasserstein barycenter problem to the n -coupling problem. As a consequence, the coupling to the sum principle (characterizing solutions to the n -coupling problem) provides a novel criterion for the explicit characterization of barycenters. Based on this criterion, we provide as a main contribution the simple to implement iterative swapping algorithm (ISA) for computing barycenters. The ISA is a completely non-parametric algorithm which provides a sharp image of the support of the barycenter and has a quadratic time complexity which is comparable to other well established algorithms designed to compute barycenters. The algorithm can also be applied to more complex optimization problems like the k -barycenter problem.","PeriodicalId":299310,"journal":{"name":"Econometrics: Mathematical Methods & Programming eJournal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"On the Computation of Wasserstein Barycenters\",\"authors\":\"Giovanni Puccetti, L. Rüschendorf, S. Vanduffel\",\"doi\":\"10.2139/ssrn.3276147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Wasserstein barycenter is an important notion in the analysis of high dimensional data with a broad range of applications in applied probability, economics, statistics, and in particular to clustering and image processing. In this paper, we state a general version of the equivalence of the Wasserstein barycenter problem to the n -coupling problem. As a consequence, the coupling to the sum principle (characterizing solutions to the n -coupling problem) provides a novel criterion for the explicit characterization of barycenters. Based on this criterion, we provide as a main contribution the simple to implement iterative swapping algorithm (ISA) for computing barycenters. The ISA is a completely non-parametric algorithm which provides a sharp image of the support of the barycenter and has a quadratic time complexity which is comparable to other well established algorithms designed to compute barycenters. The algorithm can also be applied to more complex optimization problems like the k -barycenter problem.\",\"PeriodicalId\":299310,\"journal\":{\"name\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3276147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Mathematical Methods & Programming eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3276147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract The Wasserstein barycenter is an important notion in the analysis of high dimensional data with a broad range of applications in applied probability, economics, statistics, and in particular to clustering and image processing. In this paper, we state a general version of the equivalence of the Wasserstein barycenter problem to the n -coupling problem. As a consequence, the coupling to the sum principle (characterizing solutions to the n -coupling problem) provides a novel criterion for the explicit characterization of barycenters. Based on this criterion, we provide as a main contribution the simple to implement iterative swapping algorithm (ISA) for computing barycenters. The ISA is a completely non-parametric algorithm which provides a sharp image of the support of the barycenter and has a quadratic time complexity which is comparable to other well established algorithms designed to compute barycenters. The algorithm can also be applied to more complex optimization problems like the k -barycenter problem.