{"title":"人类活动识别的机器学习方法","authors":"Umra Khan, S. Masood","doi":"10.1109/PDGC50313.2020.9315826","DOIUrl":null,"url":null,"abstract":"Human Activity Recognition (HAR) is the problem of classifying an individual's activity into well-defined moments, utilizing responsive sensors that are influenced by human movement. Sensor-enabled smartphones make Human Activity Recognition progressively significant and well known. The physical sensors, gyroscope and accelerometer combinedly allow the devices to provide motion measuring capabilities in a more accurate manner. The present research work adopts a machine learning based approach for recognizing activity on the basis of data collected through the smartphone sensors (accelerometer and gyroscope). Various state-of-the-art machine learning based techniques have been employed and compared on the basis of the performance metrics, accuracy, recall, precision, and the F1-score. Of all the selected different machine learning classifiers, the best result is given by the Support Vector Machine (SVM) with ‘RBF’ kernel, which achieved an accuracy of 96.61 % in classifying the activities into the six different classes.","PeriodicalId":347216,"journal":{"name":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Approach to Human Activity Recognition\",\"authors\":\"Umra Khan, S. Masood\",\"doi\":\"10.1109/PDGC50313.2020.9315826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human Activity Recognition (HAR) is the problem of classifying an individual's activity into well-defined moments, utilizing responsive sensors that are influenced by human movement. Sensor-enabled smartphones make Human Activity Recognition progressively significant and well known. The physical sensors, gyroscope and accelerometer combinedly allow the devices to provide motion measuring capabilities in a more accurate manner. The present research work adopts a machine learning based approach for recognizing activity on the basis of data collected through the smartphone sensors (accelerometer and gyroscope). Various state-of-the-art machine learning based techniques have been employed and compared on the basis of the performance metrics, accuracy, recall, precision, and the F1-score. Of all the selected different machine learning classifiers, the best result is given by the Support Vector Machine (SVM) with ‘RBF’ kernel, which achieved an accuracy of 96.61 % in classifying the activities into the six different classes.\",\"PeriodicalId\":347216,\"journal\":{\"name\":\"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDGC50313.2020.9315826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC50313.2020.9315826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Machine Learning Approach to Human Activity Recognition
Human Activity Recognition (HAR) is the problem of classifying an individual's activity into well-defined moments, utilizing responsive sensors that are influenced by human movement. Sensor-enabled smartphones make Human Activity Recognition progressively significant and well known. The physical sensors, gyroscope and accelerometer combinedly allow the devices to provide motion measuring capabilities in a more accurate manner. The present research work adopts a machine learning based approach for recognizing activity on the basis of data collected through the smartphone sensors (accelerometer and gyroscope). Various state-of-the-art machine learning based techniques have been employed and compared on the basis of the performance metrics, accuracy, recall, precision, and the F1-score. Of all the selected different machine learning classifiers, the best result is given by the Support Vector Machine (SVM) with ‘RBF’ kernel, which achieved an accuracy of 96.61 % in classifying the activities into the six different classes.