{"title":"室内环境下移动机器人的人类感知路点规划器","authors":"Sungwoo Yang, Sumin Kang, Myunghyun Kim, D. Kim","doi":"10.1109/IRC55401.2022.00055","DOIUrl":null,"url":null,"abstract":"As the utilization of robots in indoor environments increases, it has become common for humans and robots to co-exist in such environments. Most human-aware navigation algorithms only considered humans in the robot's field of view. However, in cases of L-shape corridors, there is a high possibility that human suddenly appears. To deal with this situation, we propose an improved corner detection algorithm and a novel waypoint planner, WPC. The proposed algorithm is validated through simulations using PedSim and Gazebo.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-Aware Waypoint Planner for Mobile Robot in Indoor Environments\",\"authors\":\"Sungwoo Yang, Sumin Kang, Myunghyun Kim, D. Kim\",\"doi\":\"10.1109/IRC55401.2022.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the utilization of robots in indoor environments increases, it has become common for humans and robots to co-exist in such environments. Most human-aware navigation algorithms only considered humans in the robot's field of view. However, in cases of L-shape corridors, there is a high possibility that human suddenly appears. To deal with this situation, we propose an improved corner detection algorithm and a novel waypoint planner, WPC. The proposed algorithm is validated through simulations using PedSim and Gazebo.\",\"PeriodicalId\":282759,\"journal\":{\"name\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC55401.2022.00055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human-Aware Waypoint Planner for Mobile Robot in Indoor Environments
As the utilization of robots in indoor environments increases, it has become common for humans and robots to co-exist in such environments. Most human-aware navigation algorithms only considered humans in the robot's field of view. However, in cases of L-shape corridors, there is a high possibility that human suddenly appears. To deal with this situation, we propose an improved corner detection algorithm and a novel waypoint planner, WPC. The proposed algorithm is validated through simulations using PedSim and Gazebo.