{"title":"基于动态的布尔网络目标控制方法","authors":"Cui Su, Jun Pang","doi":"10.1145/3388440.3412464","DOIUrl":null,"url":null,"abstract":"We study the target control problem of asynchronous Boolean networks, to identify a set of nodes, the perturbation of which can drive the dynamics of the network from any initial state to the desired steady state (or attractor). We are particularly interested in temporary perturbations, which are applied for sufficient time and then released to retrieve the original dynamics. Temporary perturbations have the apparent advantage of averting unforeseen consequences, which might be induced by permanent perturbations. Despite the infamous state-space explosion problem, in this work, we develop an efficient method to compute the temporary target control for a given target attractor of a Boolean network. We apply our method to a number of real-life biological networks and compare its performance with the stable motif-based control method to demonstrate its efficacy and efficiency.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Dynamics-based Approach for the Target Control of Boolean Networks\",\"authors\":\"Cui Su, Jun Pang\",\"doi\":\"10.1145/3388440.3412464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the target control problem of asynchronous Boolean networks, to identify a set of nodes, the perturbation of which can drive the dynamics of the network from any initial state to the desired steady state (or attractor). We are particularly interested in temporary perturbations, which are applied for sufficient time and then released to retrieve the original dynamics. Temporary perturbations have the apparent advantage of averting unforeseen consequences, which might be induced by permanent perturbations. Despite the infamous state-space explosion problem, in this work, we develop an efficient method to compute the temporary target control for a given target attractor of a Boolean network. We apply our method to a number of real-life biological networks and compare its performance with the stable motif-based control method to demonstrate its efficacy and efficiency.\",\"PeriodicalId\":411338,\"journal\":{\"name\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388440.3412464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3412464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Dynamics-based Approach for the Target Control of Boolean Networks
We study the target control problem of asynchronous Boolean networks, to identify a set of nodes, the perturbation of which can drive the dynamics of the network from any initial state to the desired steady state (or attractor). We are particularly interested in temporary perturbations, which are applied for sufficient time and then released to retrieve the original dynamics. Temporary perturbations have the apparent advantage of averting unforeseen consequences, which might be induced by permanent perturbations. Despite the infamous state-space explosion problem, in this work, we develop an efficient method to compute the temporary target control for a given target attractor of a Boolean network. We apply our method to a number of real-life biological networks and compare its performance with the stable motif-based control method to demonstrate its efficacy and efficiency.