布局后SRAM的快速仿真模型

Xiaocheng Jing, R. Yao
{"title":"布局后SRAM的快速仿真模型","authors":"Xiaocheng Jing, R. Yao","doi":"10.1109/ICASIC.2007.4415849","DOIUrl":null,"url":null,"abstract":"A fast, high precision model for simulating post-layout static random access memory (SRAM) is presented. For large capacity SRAM, this model can greatly save both simulation time and layout parasitic parameters extraction time while keep sufficient precision. For a typical 2KX32bit SRAM, this model can save about 92% simulation time and about 90% layout parasitic parameters extraction time, while keep the result varying within 5%.","PeriodicalId":120984,"journal":{"name":"2007 7th International Conference on ASIC","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fast-simulation model for post-layout SRAM\",\"authors\":\"Xiaocheng Jing, R. Yao\",\"doi\":\"10.1109/ICASIC.2007.4415849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast, high precision model for simulating post-layout static random access memory (SRAM) is presented. For large capacity SRAM, this model can greatly save both simulation time and layout parasitic parameters extraction time while keep sufficient precision. For a typical 2KX32bit SRAM, this model can save about 92% simulation time and about 90% layout parasitic parameters extraction time, while keep the result varying within 5%.\",\"PeriodicalId\":120984,\"journal\":{\"name\":\"2007 7th International Conference on ASIC\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th International Conference on ASIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASIC.2007.4415849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASIC.2007.4415849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种快速、高精度的布局后静态随机存取存储器(SRAM)仿真模型。对于大容量SRAM,该模型在保持足够精度的同时,大大节省了仿真时间和布局寄生参数提取时间。对于典型的2kx32位SRAM,该模型可以节省约92%的仿真时间和约90%的布局寄生参数提取时间,同时将结果的变化保持在5%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast-simulation model for post-layout SRAM
A fast, high precision model for simulating post-layout static random access memory (SRAM) is presented. For large capacity SRAM, this model can greatly save both simulation time and layout parasitic parameters extraction time while keep sufficient precision. For a typical 2KX32bit SRAM, this model can save about 92% simulation time and about 90% layout parasitic parameters extraction time, while keep the result varying within 5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leakage power reduction through dual Vth assignment considering threshold voltage variation Software defined cognitive radios Multi-level signaling for energy-efficient on-chip interconnects An efficient transformation method for DFRM expansions Design, implementation and testing of an IEEE 802.11 b/g baseband chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1