利用相关滞后重构有限长度序列

A. Steinhardt
{"title":"利用相关滞后重构有限长度序列","authors":"A. Steinhardt","doi":"10.1109/ICASSP.1987.1169415","DOIUrl":null,"url":null,"abstract":"In this paper we present an algorithm which answers the following question: Given a finite number of correlation lags, what is the shortest length sequence which could have produced these correlations? This question is equivalent to asking for the minimum order moving average (all-zero) model which can match a given set of correlations. The algorithm applies to both the case of uniform correlations and missing lag correlations. The algorithm involves quadratic programming coupled with a new representation of the boundary of correlations derived from finite sequences in terms of the spectral decomposition of a certain class of banded Toeplitz matrices.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reconstructing a finite length sequence from several of its correlation lags\",\"authors\":\"A. Steinhardt\",\"doi\":\"10.1109/ICASSP.1987.1169415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an algorithm which answers the following question: Given a finite number of correlation lags, what is the shortest length sequence which could have produced these correlations? This question is equivalent to asking for the minimum order moving average (all-zero) model which can match a given set of correlations. The algorithm applies to both the case of uniform correlations and missing lag correlations. The algorithm involves quadratic programming coupled with a new representation of the boundary of correlations derived from finite sequences in terms of the spectral decomposition of a certain class of banded Toeplitz matrices.\",\"PeriodicalId\":140810,\"journal\":{\"name\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1987.1169415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种算法,它回答了以下问题:给定有限数量的相关滞后,可以产生这些相关性的最短长度序列是什么?这个问题相当于要求最小订单移动平均(全零)模型,该模型可以匹配给定的一组相关性。该算法适用于均匀相关和缺失滞后相关的情况。该算法涉及二次规划,并结合一类带状Toeplitz矩阵的谱分解来表示有限序列的关联边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstructing a finite length sequence from several of its correlation lags
In this paper we present an algorithm which answers the following question: Given a finite number of correlation lags, what is the shortest length sequence which could have produced these correlations? This question is equivalent to asking for the minimum order moving average (all-zero) model which can match a given set of correlations. The algorithm applies to both the case of uniform correlations and missing lag correlations. The algorithm involves quadratic programming coupled with a new representation of the boundary of correlations derived from finite sequences in terms of the spectral decomposition of a certain class of banded Toeplitz matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high resolution data-adaptive time-frequency representation A fast prediction-error detector for estimating sparse-spike sequences Some applications of mathematical morphology to range imagery Parameter estimation using the autocorrelation of the discrete Fourier transform Array signal processing with interconnected Neuron-like elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1