通过衍射断层扫描的中风脑的差分微波成像

Ismail Dilman, M. N. Akıncı, M. Çayören, I. Akduman
{"title":"通过衍射断层扫描的中风脑的差分微波成像","authors":"Ismail Dilman, M. N. Akıncı, M. Çayören, I. Akduman","doi":"10.1109/TELFOR.2017.8249382","DOIUrl":null,"url":null,"abstract":"In this study, we present the application of one of the traditional imaging method — Diffraction tomographyin monitoring of hemorrhagic brain strokes in order to evaluate the patient's condition. A realistic Zubal head phantom is used as the model and it is illuminated by 36 line sources in different scenarios to investigate the feasibility of method. The diffraction tomography based imaging methods can be confidently used only for weak scatterers. Differential data, which is obtained by measuring scattering fields in different time steps, can be treated as a weak scatterer. In addition, we have used a lossless matching medium with dielectric permittivity of 40, which not only enhances the penetration of microwaves to the brain, but also makes the measurements in far field more reliable. Reconstructed profile is extracted from differential data by solving a linear matrix system with least square method. Numerical results demonstrate that diffraction tomography can be an alternative to the previous methods with its simplicity and fast response time.","PeriodicalId":422501,"journal":{"name":"2017 25th Telecommunication Forum (TELFOR)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Differential microwave imaging of the stroke-affected brain via diffraction tomography\",\"authors\":\"Ismail Dilman, M. N. Akıncı, M. Çayören, I. Akduman\",\"doi\":\"10.1109/TELFOR.2017.8249382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present the application of one of the traditional imaging method — Diffraction tomographyin monitoring of hemorrhagic brain strokes in order to evaluate the patient's condition. A realistic Zubal head phantom is used as the model and it is illuminated by 36 line sources in different scenarios to investigate the feasibility of method. The diffraction tomography based imaging methods can be confidently used only for weak scatterers. Differential data, which is obtained by measuring scattering fields in different time steps, can be treated as a weak scatterer. In addition, we have used a lossless matching medium with dielectric permittivity of 40, which not only enhances the penetration of microwaves to the brain, but also makes the measurements in far field more reliable. Reconstructed profile is extracted from differential data by solving a linear matrix system with least square method. Numerical results demonstrate that diffraction tomography can be an alternative to the previous methods with its simplicity and fast response time.\",\"PeriodicalId\":422501,\"journal\":{\"name\":\"2017 25th Telecommunication Forum (TELFOR)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Telecommunication Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR.2017.8249382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Telecommunication Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR.2017.8249382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项研究中,我们提出了一种传统的成像方法-衍射层析成像在出血性脑卒中监测中的应用,以评估患者的病情。以一个真实的祖巴尔头部模型为模型,在不同的场景下对其进行36个线光源照射,以验证该方法的可行性。基于衍射层析成像的方法只能用于弱散射体。通过测量不同时间步长的散射场而得到的差分数据可以视为弱散射体。此外,我们还采用了介电常数为40的无损匹配介质,不仅增强了微波对大脑的穿透性,而且使远场测量更加可靠。利用最小二乘法求解线性矩阵系统,从微分数据中提取重构剖面。数值结果表明,衍射层析成像具有简单、响应时间快等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential microwave imaging of the stroke-affected brain via diffraction tomography
In this study, we present the application of one of the traditional imaging method — Diffraction tomographyin monitoring of hemorrhagic brain strokes in order to evaluate the patient's condition. A realistic Zubal head phantom is used as the model and it is illuminated by 36 line sources in different scenarios to investigate the feasibility of method. The diffraction tomography based imaging methods can be confidently used only for weak scatterers. Differential data, which is obtained by measuring scattering fields in different time steps, can be treated as a weak scatterer. In addition, we have used a lossless matching medium with dielectric permittivity of 40, which not only enhances the penetration of microwaves to the brain, but also makes the measurements in far field more reliable. Reconstructed profile is extracted from differential data by solving a linear matrix system with least square method. Numerical results demonstrate that diffraction tomography can be an alternative to the previous methods with its simplicity and fast response time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposing bat inspired heuristic algorithm for the optimization of GMPLS networks Investigation on temporal skewing among O-CDMA code carriers under fiber temperature variations Survey on machine learning algorithms as cloud service for CIDPS Identity provider deployment based on container technology Enhanced bandwidth PIFA antennas for 900/1800 MHz and WiFi 2400 MHz band with a dielectric cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1