基于1D-CNN模型的复杂环境下雷达多目标分类

Muhammet Emin Yanik, Sandeep Rao
{"title":"基于1D-CNN模型的复杂环境下雷达多目标分类","authors":"Muhammet Emin Yanik, Sandeep Rao","doi":"10.1109/RadarConf2351548.2023.10149609","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust multiple target classification algorithm for real-world complex cluttered environments that can be mapped into low-cost millimeter-wave (mmWave) sensors considering limited memory and processing power budget. A novel approach is developed to create both μ-Doppler and μ-range spectrogram of multiple objects concurrently using an extended Kalman filter (EKF) based tracking layer integration. One-dimensional (1D) time sequence features are extracted from both spectrograms per target object, and a 1D convolutional neural network (CNN) based classifier is built to classify multiple target objects (human or non-human) in the same scene accurately.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radar-Based Multiple Target Classification in Complex Environments Using 1D-CNN Models\",\"authors\":\"Muhammet Emin Yanik, Sandeep Rao\",\"doi\":\"10.1109/RadarConf2351548.2023.10149609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a robust multiple target classification algorithm for real-world complex cluttered environments that can be mapped into low-cost millimeter-wave (mmWave) sensors considering limited memory and processing power budget. A novel approach is developed to create both μ-Doppler and μ-range spectrogram of multiple objects concurrently using an extended Kalman filter (EKF) based tracking layer integration. One-dimensional (1D) time sequence features are extracted from both spectrograms per target object, and a 1D convolutional neural network (CNN) based classifier is built to classify multiple target objects (human or non-human) in the same scene accurately.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种鲁棒的多目标分类算法,用于现实世界复杂杂乱的环境,可以映射到低成本的毫米波(mmWave)传感器中,考虑到有限的内存和处理能力预算。提出了一种基于扩展卡尔曼滤波(EKF)的跟踪层集成的多目标μ多普勒和μ距离谱图同时生成的新方法。从每个目标物体的光谱图中提取一维时间序列特征,并构建基于一维卷积神经网络(CNN)的分类器,对同一场景中的多个目标物体(人或非人)进行准确分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radar-Based Multiple Target Classification in Complex Environments Using 1D-CNN Models
In this paper, we propose a robust multiple target classification algorithm for real-world complex cluttered environments that can be mapped into low-cost millimeter-wave (mmWave) sensors considering limited memory and processing power budget. A novel approach is developed to create both μ-Doppler and μ-range spectrogram of multiple objects concurrently using an extended Kalman filter (EKF) based tracking layer integration. One-dimensional (1D) time sequence features are extracted from both spectrograms per target object, and a 1D convolutional neural network (CNN) based classifier is built to classify multiple target objects (human or non-human) in the same scene accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Priority-based Task Scheduling in Dynamic Environments for Cognitive MFR via Transfer DRL An Application of Artificial Intelligence to Adaptive Radar Detection Using Raw Data mm-Wave wireless radar network for early detection of Parkinson's Disease by gait analysis Correlation Coefficient vs. Transmit Power for an Experimental Noise Radar Analysis of Keller Cones for RF Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1