一种基于潜在语义模型的聚类算法

Bu-Yu Wang, Mei-an Li, Yongjun Wang
{"title":"一种基于潜在语义模型的聚类算法","authors":"Bu-Yu Wang, Mei-an Li, Yongjun Wang","doi":"10.1109/ICACIA.2009.5361155","DOIUrl":null,"url":null,"abstract":"In order to precisely procure the Chinese person information on the web, especially distinguish from the namesake, this paper propose a clustering algorithm based on latent semantic model. It establishes for every document a latent semantic model of sentence-word matrix based on central distance, central segment, document length, etc, by building the central word library of person attributes. It clusters the similar documents by means of dynamic-extending clustering algorithm. Experiments prove that the algorithm gives high accuracy to documents clustering as well as maintaining the coherence of the person's semantic information and highlighting the importance of semantic information under different sequences.","PeriodicalId":423210,"journal":{"name":"2009 International Conference on Apperceiving Computing and Intelligence Analysis","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A clustering algorithm based on latent semantic model\",\"authors\":\"Bu-Yu Wang, Mei-an Li, Yongjun Wang\",\"doi\":\"10.1109/ICACIA.2009.5361155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to precisely procure the Chinese person information on the web, especially distinguish from the namesake, this paper propose a clustering algorithm based on latent semantic model. It establishes for every document a latent semantic model of sentence-word matrix based on central distance, central segment, document length, etc, by building the central word library of person attributes. It clusters the similar documents by means of dynamic-extending clustering algorithm. Experiments prove that the algorithm gives high accuracy to documents clustering as well as maintaining the coherence of the person's semantic information and highlighting the importance of semantic information under different sequences.\",\"PeriodicalId\":423210,\"journal\":{\"name\":\"2009 International Conference on Apperceiving Computing and Intelligence Analysis\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Apperceiving Computing and Intelligence Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACIA.2009.5361155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Apperceiving Computing and Intelligence Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACIA.2009.5361155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了准确获取网络上的中国人信息,特别是区分人名,本文提出了一种基于潜在语义模型的聚类算法。通过构建人物属性中心词库,为每个文档建立基于中心距离、中心段、文档长度等的句词矩阵潜在语义模型。采用动态扩展聚类算法对相似文档进行聚类。实验证明,该算法在保持人物语义信息的一致性和突出不同序列下语义信息的重要性的同时,对文档聚类具有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A clustering algorithm based on latent semantic model
In order to precisely procure the Chinese person information on the web, especially distinguish from the namesake, this paper propose a clustering algorithm based on latent semantic model. It establishes for every document a latent semantic model of sentence-word matrix based on central distance, central segment, document length, etc, by building the central word library of person attributes. It clusters the similar documents by means of dynamic-extending clustering algorithm. Experiments prove that the algorithm gives high accuracy to documents clustering as well as maintaining the coherence of the person's semantic information and highlighting the importance of semantic information under different sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cache replacement strategy for streaming media based on semantic mining A lock-free algorithm for union-find with deletion Optimized GM (1, 1) based on Romber algorithm and quadratic interpolation method Analysis of acupuncture point signal using Wavelet Transform and higher-order statistical method Distributed anomaly detection by model sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1