提出了一种基于全集成模块化神经网络的基于面部动作编码系统的面部情绪自动识别系统架构

Mihai Gavrilescu
{"title":"提出了一种基于全集成模块化神经网络的基于面部动作编码系统的面部情绪自动识别系统架构","authors":"Mihai Gavrilescu","doi":"10.1109/ICCOMM.2014.6866754","DOIUrl":null,"url":null,"abstract":"In this paper we describe the architecture of a fully integrated modular neural network-based automatic facial emotion recognition (FER) system able to recognize emotions based on the Facial Action Code System (FACS). The proposed framework makes use of a neural network to combine the recognition results from different sources, improving the integration of different types of classifiers, in order to provide better facial emotion recognition results. We present the architecture and the implementation details, as well as results and possible improvements that can be brought to the current framework.","PeriodicalId":366043,"journal":{"name":"2014 10th International Conference on Communications (COMM)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Proposed architecture of a fully integrated modular neural network-based automatic facial emotion recognition system based on Facial Action Coding System\",\"authors\":\"Mihai Gavrilescu\",\"doi\":\"10.1109/ICCOMM.2014.6866754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe the architecture of a fully integrated modular neural network-based automatic facial emotion recognition (FER) system able to recognize emotions based on the Facial Action Code System (FACS). The proposed framework makes use of a neural network to combine the recognition results from different sources, improving the integration of different types of classifiers, in order to provide better facial emotion recognition results. We present the architecture and the implementation details, as well as results and possible improvements that can be brought to the current framework.\",\"PeriodicalId\":366043,\"journal\":{\"name\":\"2014 10th International Conference on Communications (COMM)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 10th International Conference on Communications (COMM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCOMM.2014.6866754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCOMM.2014.6866754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们描述了一个完全集成的模块化神经网络的自动面部情绪识别(FER)系统的架构,该系统能够识别基于面部动作代码系统(FACS)的情绪。该框架利用神经网络对不同来源的识别结果进行组合,提高了不同类型分类器的集成,从而提供更好的面部情绪识别结果。我们介绍了体系结构和实现细节,以及可以给当前框架带来的结果和可能的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proposed architecture of a fully integrated modular neural network-based automatic facial emotion recognition system based on Facial Action Coding System
In this paper we describe the architecture of a fully integrated modular neural network-based automatic facial emotion recognition (FER) system able to recognize emotions based on the Facial Action Code System (FACS). The proposed framework makes use of a neural network to combine the recognition results from different sources, improving the integration of different types of classifiers, in order to provide better facial emotion recognition results. We present the architecture and the implementation details, as well as results and possible improvements that can be brought to the current framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An IoT architecture for things from industrial environment Non-data aided doppler shift estimation for underwater acoustic communication Inter-symbol interference free pulses for transmission over Intensity-Modulated Channels Performance analysis of MC-CDMA system when image transmission is involved A study on the common words found in different literary Romanian corpora
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1