基于嵌套网络的目标分割特征表示优化

Abdalrahman Alblwi, K. Barner
{"title":"基于嵌套网络的目标分割特征表示优化","authors":"Abdalrahman Alblwi, K. Barner","doi":"10.1109/ICOA55659.2022.9934631","DOIUrl":null,"url":null,"abstract":"Automatic object segmentation based on artificial neural networks is a critical task in an array of real-world applications. Localizing and region segmentation is of particular interest, although typical approaches rely on complex networks and/or human interactions. Therefore, various complex networks suffer from suboptimal segmentation due to inaccurate feature extraction. This paper introduces a Multi-Gated Nested Network (MGN-net) that provides precise segmentation performance by capturing relevant contextual information via a channel gating mechanism. Results utilize challenging biomedical image databases, featuring MRI Brain and Chest X-ray images, are presented. The results show that the MGN-net approach subjectively and objectively performs favorably compared to multiple state-of-the-art methods, such as the U2-net and U-net networks.","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Feature Representation via A Nested Network for Object Segmentation\",\"authors\":\"Abdalrahman Alblwi, K. Barner\",\"doi\":\"10.1109/ICOA55659.2022.9934631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic object segmentation based on artificial neural networks is a critical task in an array of real-world applications. Localizing and region segmentation is of particular interest, although typical approaches rely on complex networks and/or human interactions. Therefore, various complex networks suffer from suboptimal segmentation due to inaccurate feature extraction. This paper introduces a Multi-Gated Nested Network (MGN-net) that provides precise segmentation performance by capturing relevant contextual information via a channel gating mechanism. Results utilize challenging biomedical image databases, featuring MRI Brain and Chest X-ray images, are presented. The results show that the MGN-net approach subjectively and objectively performs favorably compared to multiple state-of-the-art methods, such as the U2-net and U-net networks.\",\"PeriodicalId\":345017,\"journal\":{\"name\":\"2022 8th International Conference on Optimization and Applications (ICOA)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Optimization and Applications (ICOA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOA55659.2022.9934631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于人工神经网络的自动目标分割是一系列实际应用中的关键任务。虽然典型的方法依赖于复杂的网络和/或人类互动,但本地化和区域分割是特别有趣的。因此,由于特征提取不准确,各种复杂网络都会出现次优分割。本文介绍了一种多门控嵌套网络(MGN-net),该网络通过通道门控机制捕获相关上下文信息,从而提供精确的分割性能。结果利用具有挑战性的生物医学图像数据库,具有MRI脑和胸部x线图像,提出。结果表明,与多种最先进的方法(如U2-net和U-net)相比,MGN-net方法在主观上和客观上都表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Feature Representation via A Nested Network for Object Segmentation
Automatic object segmentation based on artificial neural networks is a critical task in an array of real-world applications. Localizing and region segmentation is of particular interest, although typical approaches rely on complex networks and/or human interactions. Therefore, various complex networks suffer from suboptimal segmentation due to inaccurate feature extraction. This paper introduces a Multi-Gated Nested Network (MGN-net) that provides precise segmentation performance by capturing relevant contextual information via a channel gating mechanism. Results utilize challenging biomedical image databases, featuring MRI Brain and Chest X-ray images, are presented. The results show that the MGN-net approach subjectively and objectively performs favorably compared to multiple state-of-the-art methods, such as the U2-net and U-net networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The importance of enterprise resource planning (ERP) in the optimisation of the small and medium enterprise's ressources in Morocco Nonsmooth Optimization for Synaptic Depression Dynamics 6G and V2X Communications: Applications, Features, and Challenges An Optimized Adaptive Learning Approach Based on Cuckoo Search Algorithm Waste solid management using Machine learning approch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1