Jian He, M. Qureshi, L. Qiu, Jin Li, Feng Li, Lei Han
{"title":"忙","authors":"Jian He, M. Qureshi, L. Qiu, Jin Li, Feng Li, Lei Han","doi":"10.1145/2491288.2491292","DOIUrl":null,"url":null,"abstract":"While the increasing scales of the recent WSN deployments keep pushing a higher demand on the network throughput, the 16 orthogonal channels of the ZigBee radios are intensively explored to improve the parallelism of the transmissions. However, the interferences generated by other ISM band wireless devices (e.g., WiFi) have severely limited the usable channels for WSNs. Such a situation raises a need for a spectrum utilizing method more efficient than the conventional multi-channel access. To this end, we propose to shift the paradigm from discrete channel allocation to continuous frequency allocation in this paper. Motivated by our experiments showing the flexible and efficient use of spectrum through continuously tuning channel center frequencies with respect to link distances, we present FAVOR (Frequency Allocation for Versatile Occupancy of spectRum) to allocate proper center frequencies in a continuous spectrum (hence potentially overlapped channels, rather than discrete orthogonal channels) to nodes or links. To find an optimal frequency allocation, FAVOR creatively combines location and frequency into one space and thus transforms the frequency allocation problem into a spatial tessellation problem. This allows FAVOR to innovatively extend a spatial tessellation technique for the purpose of frequency allocation. We implement FAVOR in MicaZ platforms, and our extensive experiments with different network settings strongly demonstrate the superiority of FAVOR over existing approaches.","PeriodicalId":141196,"journal":{"name":"Proceedings of the 9th ACM Multimedia Systems Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Favor\",\"authors\":\"Jian He, M. Qureshi, L. Qiu, Jin Li, Feng Li, Lei Han\",\"doi\":\"10.1145/2491288.2491292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the increasing scales of the recent WSN deployments keep pushing a higher demand on the network throughput, the 16 orthogonal channels of the ZigBee radios are intensively explored to improve the parallelism of the transmissions. However, the interferences generated by other ISM band wireless devices (e.g., WiFi) have severely limited the usable channels for WSNs. Such a situation raises a need for a spectrum utilizing method more efficient than the conventional multi-channel access. To this end, we propose to shift the paradigm from discrete channel allocation to continuous frequency allocation in this paper. Motivated by our experiments showing the flexible and efficient use of spectrum through continuously tuning channel center frequencies with respect to link distances, we present FAVOR (Frequency Allocation for Versatile Occupancy of spectRum) to allocate proper center frequencies in a continuous spectrum (hence potentially overlapped channels, rather than discrete orthogonal channels) to nodes or links. To find an optimal frequency allocation, FAVOR creatively combines location and frequency into one space and thus transforms the frequency allocation problem into a spatial tessellation problem. This allows FAVOR to innovatively extend a spatial tessellation technique for the purpose of frequency allocation. We implement FAVOR in MicaZ platforms, and our extensive experiments with different network settings strongly demonstrate the superiority of FAVOR over existing approaches.\",\"PeriodicalId\":141196,\"journal\":{\"name\":\"Proceedings of the 9th ACM Multimedia Systems Conference\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Multimedia Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2491288.2491292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2491288.2491292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Favor
While the increasing scales of the recent WSN deployments keep pushing a higher demand on the network throughput, the 16 orthogonal channels of the ZigBee radios are intensively explored to improve the parallelism of the transmissions. However, the interferences generated by other ISM band wireless devices (e.g., WiFi) have severely limited the usable channels for WSNs. Such a situation raises a need for a spectrum utilizing method more efficient than the conventional multi-channel access. To this end, we propose to shift the paradigm from discrete channel allocation to continuous frequency allocation in this paper. Motivated by our experiments showing the flexible and efficient use of spectrum through continuously tuning channel center frequencies with respect to link distances, we present FAVOR (Frequency Allocation for Versatile Occupancy of spectRum) to allocate proper center frequencies in a continuous spectrum (hence potentially overlapped channels, rather than discrete orthogonal channels) to nodes or links. To find an optimal frequency allocation, FAVOR creatively combines location and frequency into one space and thus transforms the frequency allocation problem into a spatial tessellation problem. This allows FAVOR to innovatively extend a spatial tessellation technique for the purpose of frequency allocation. We implement FAVOR in MicaZ platforms, and our extensive experiments with different network settings strongly demonstrate the superiority of FAVOR over existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual object tracking in a parking garage using compressed domain analysis ISIFT VideoNOC OpenCV.js: computer vision processing for the open web platform Subdiv17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1