{"title":"多层地基结构中土壤参数的优化","authors":"R. Senthilkumar","doi":"10.1109/APPEEC.2017.8308979","DOIUrl":null,"url":null,"abstract":"This paper proposes an optimization methodology to estimate the parameters of multilayer earth structure by using the hybrid genetic algorithm and particle swarm optimization. By using four wire Wenner method on the ground is to acquire the experimental apparent resistivity curve. With the measured experimental apparent resistivity, can compute the theoretical apparent resistivity curve and estimate the soil parameters such as a number of layers, thickness of each layer (Nth layer thickness is infinity) and its resistivity. The representation of unknown soil is determined by comparing the closeness of experimental apparent resistivity curve with the theoretical optimized apparent resistivity.","PeriodicalId":247669,"journal":{"name":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimization of soil parameters in multiple layers of ground structure\",\"authors\":\"R. Senthilkumar\",\"doi\":\"10.1109/APPEEC.2017.8308979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an optimization methodology to estimate the parameters of multilayer earth structure by using the hybrid genetic algorithm and particle swarm optimization. By using four wire Wenner method on the ground is to acquire the experimental apparent resistivity curve. With the measured experimental apparent resistivity, can compute the theoretical apparent resistivity curve and estimate the soil parameters such as a number of layers, thickness of each layer (Nth layer thickness is infinity) and its resistivity. The representation of unknown soil is determined by comparing the closeness of experimental apparent resistivity curve with the theoretical optimized apparent resistivity.\",\"PeriodicalId\":247669,\"journal\":{\"name\":\"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2017.8308979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2017.8308979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of soil parameters in multiple layers of ground structure
This paper proposes an optimization methodology to estimate the parameters of multilayer earth structure by using the hybrid genetic algorithm and particle swarm optimization. By using four wire Wenner method on the ground is to acquire the experimental apparent resistivity curve. With the measured experimental apparent resistivity, can compute the theoretical apparent resistivity curve and estimate the soil parameters such as a number of layers, thickness of each layer (Nth layer thickness is infinity) and its resistivity. The representation of unknown soil is determined by comparing the closeness of experimental apparent resistivity curve with the theoretical optimized apparent resistivity.