基于自动原理图生成的对象空间关系可视化的地理属性实体提取技术

A. Vicentiy, M. Shishaev
{"title":"基于自动原理图生成的对象空间关系可视化的地理属性实体提取技术","authors":"A. Vicentiy, M. Shishaev","doi":"10.37614/2307-5252.2021.5.12.003","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of extracting geoattributed entities from natural language texts to visualize the spatial relations of geographical objects. For visualization we use the technology of automated generation of schematic maps as subject-oriented components of geographic information systems. The paper describes the information technology that allows extracting geoattributed entities from natural language texts by combining several approaches. These are the neural network approach, the rule-based approach and the approach based on the use of lexico-syntactic patterns for the analysis of natural language texts. For data visualization we propose to use automated geocoding tools in conjunction with the capabilities of modern geographic information systems. The result of this technology is a cartogram that displays the spatial relations of the objects mentioned in the text.","PeriodicalId":438304,"journal":{"name":"Transaction Kola Science Centre","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The geoattributed entity extraction technology for visual representation of objects spatial relations based on automated schematic map generation\",\"authors\":\"A. Vicentiy, M. Shishaev\",\"doi\":\"10.37614/2307-5252.2021.5.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of extracting geoattributed entities from natural language texts to visualize the spatial relations of geographical objects. For visualization we use the technology of automated generation of schematic maps as subject-oriented components of geographic information systems. The paper describes the information technology that allows extracting geoattributed entities from natural language texts by combining several approaches. These are the neural network approach, the rule-based approach and the approach based on the use of lexico-syntactic patterns for the analysis of natural language texts. For data visualization we propose to use automated geocoding tools in conjunction with the capabilities of modern geographic information systems. The result of this technology is a cartogram that displays the spatial relations of the objects mentioned in the text.\",\"PeriodicalId\":438304,\"journal\":{\"name\":\"Transaction Kola Science Centre\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transaction Kola Science Centre\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37614/2307-5252.2021.5.12.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transaction Kola Science Centre","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37614/2307-5252.2021.5.12.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了从自然语言文本中提取地理属性实体以实现地理对象空间关系可视化的问题。对于可视化,我们使用自动生成原理图的技术作为地理信息系统的主题导向组件。本文描述了一种结合多种方法从自然语言文本中提取地理属性实体的信息技术。这些方法是神经网络方法、基于规则的方法和基于使用词典句法模式的方法来分析自然语言文本。对于数据可视化,我们建议结合现代地理信息系统的功能使用自动地理编码工具。这种技术的结果是一个地图图,显示文本中提到的对象的空间关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The geoattributed entity extraction technology for visual representation of objects spatial relations based on automated schematic map generation
This paper considers the problem of extracting geoattributed entities from natural language texts to visualize the spatial relations of geographical objects. For visualization we use the technology of automated generation of schematic maps as subject-oriented components of geographic information systems. The paper describes the information technology that allows extracting geoattributed entities from natural language texts by combining several approaches. These are the neural network approach, the rule-based approach and the approach based on the use of lexico-syntactic patterns for the analysis of natural language texts. For data visualization we propose to use automated geocoding tools in conjunction with the capabilities of modern geographic information systems. The result of this technology is a cartogram that displays the spatial relations of the objects mentioned in the text.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Kola Society and prospects for its development in the description of V. I. Nemirovich-Danchenko (based on the book “The Land of the Cold: Seen and Heard”, 1876) Traditional and new crafts of the Yokostrov Sami during the transition to settlement in the 19th and early 20th centuries Documents on the history of the parishes of the Kola North in the fund of the Kem’ Spirirtual Collegium of National Archive of Republic of Karelia The system of interactions in the multi-ethnic community of builders of the Murmansk Railway Colonists of Murman in the documents of the Evangelical Lutheran parish of the Murmansk cost
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1