支持mooc教师的推荐系统:基于本体和关联数据的框架

Hanane Sebbaq, N. E. Faddouli, S. Bennani
{"title":"支持mooc教师的推荐系统:基于本体和关联数据的框架","authors":"Hanane Sebbaq, N. E. Faddouli, S. Bennani","doi":"10.1145/3419604.3419619","DOIUrl":null,"url":null,"abstract":"The proliferation of Massive Open Online Courses (MOOCs) has generated conflicting opinions about their quality. In this paper, we aim at improving the quality of MOOCs through assisting teachers and designers from the initiation phase of MOOCs. For this purpose, we propose a recommendation system Framework based on the knowledge about teachers and MOOCs. Our approach aims to overcome the problems of traditional recommendation systems, by using and integrating different techniques: modeling via ontologies, semantic web technologies, extracting and integrating Linked Data from different sources, ontology mapping and semantic similarity measures.","PeriodicalId":250715,"journal":{"name":"Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Recommender System to Support MOOCs Teachers: Framework based on Ontology and Linked Data\",\"authors\":\"Hanane Sebbaq, N. E. Faddouli, S. Bennani\",\"doi\":\"10.1145/3419604.3419619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of Massive Open Online Courses (MOOCs) has generated conflicting opinions about their quality. In this paper, we aim at improving the quality of MOOCs through assisting teachers and designers from the initiation phase of MOOCs. For this purpose, we propose a recommendation system Framework based on the knowledge about teachers and MOOCs. Our approach aims to overcome the problems of traditional recommendation systems, by using and integrating different techniques: modeling via ontologies, semantic web technologies, extracting and integrating Linked Data from different sources, ontology mapping and semantic similarity measures.\",\"PeriodicalId\":250715,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3419604.3419619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3419604.3419619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

大规模在线开放课程(MOOCs)的激增引发了人们对其质量的不同看法。本文旨在从mooc的启动阶段开始,通过对教师和设计师的帮助,提高mooc的质量。为此,我们提出了一个基于教师知识和mooc知识的推荐系统框架。我们的方法旨在通过使用和集成不同的技术来克服传统推荐系统的问题:通过本体建模、语义web技术、从不同来源提取和集成关联数据、本体映射和语义相似性度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recommender System to Support MOOCs Teachers: Framework based on Ontology and Linked Data
The proliferation of Massive Open Online Courses (MOOCs) has generated conflicting opinions about their quality. In this paper, we aim at improving the quality of MOOCs through assisting teachers and designers from the initiation phase of MOOCs. For this purpose, we propose a recommendation system Framework based on the knowledge about teachers and MOOCs. Our approach aims to overcome the problems of traditional recommendation systems, by using and integrating different techniques: modeling via ontologies, semantic web technologies, extracting and integrating Linked Data from different sources, ontology mapping and semantic similarity measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Mining Semantically Enriched Configurable Process Models Optimized Switch-Controller Association For Data Center Test Generation Tool for Modified Condition/Decision Coverage: Model Based Testing SHAMan Use of formative assessment to improve the online teaching materials content quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1