电机建模中降阶的机器学习视角

Maria Nutu, Horia F. Pop, C. Martis, S. Cosman, Andreea-Mǎdǎlina Nicorici
{"title":"电机建模中降阶的机器学习视角","authors":"Maria Nutu, Horia F. Pop, C. Martis, S. Cosman, Andreea-Mǎdǎlina Nicorici","doi":"10.1109/SYNASC49474.2019.00035","DOIUrl":null,"url":null,"abstract":"This paper presents two approaches of model order reduction applied to two different type of electrical motors, the Permanent Magnet Synchronous Reluctance Machine (PMASynRM) and the Switched Reluctance Motor(SRM). In the field of Electrical Machines, a motor can be described using a mathematical model, with complex non-linear differential equations, based on equivalent electric circuit parameters (inductances and resistances). Different theoretical and experimental methods have been proposed for estimating the inductances, requiring time consuming tests or simulations. Finding methods to reduce the number of simulations/measurements necessary to compute the parameters of the motors represents a constant concern in the Industry research field. Less measurements/simulations means reducing the computation time, which is a priority in Industry, for a shorter time-to-market. In our experiments we have chosen to reduce the problem dimensions for the computation of the magnetization characteristic of the machines, using Machine Learning. We compared Principal Component Analysis with Polynomial Interpolation and we have reduced the problem space with 50% up to 80%, depending on the motor type and context.","PeriodicalId":102054,"journal":{"name":"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Perspective for Order Reduction in Electrical Motors Modeling\",\"authors\":\"Maria Nutu, Horia F. Pop, C. Martis, S. Cosman, Andreea-Mǎdǎlina Nicorici\",\"doi\":\"10.1109/SYNASC49474.2019.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two approaches of model order reduction applied to two different type of electrical motors, the Permanent Magnet Synchronous Reluctance Machine (PMASynRM) and the Switched Reluctance Motor(SRM). In the field of Electrical Machines, a motor can be described using a mathematical model, with complex non-linear differential equations, based on equivalent electric circuit parameters (inductances and resistances). Different theoretical and experimental methods have been proposed for estimating the inductances, requiring time consuming tests or simulations. Finding methods to reduce the number of simulations/measurements necessary to compute the parameters of the motors represents a constant concern in the Industry research field. Less measurements/simulations means reducing the computation time, which is a priority in Industry, for a shorter time-to-market. In our experiments we have chosen to reduce the problem dimensions for the computation of the magnetization characteristic of the machines, using Machine Learning. We compared Principal Component Analysis with Polynomial Interpolation and we have reduced the problem space with 50% up to 80%, depending on the motor type and context.\",\"PeriodicalId\":102054,\"journal\":{\"name\":\"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC49474.2019.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC49474.2019.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对永磁同步磁阻电机(PMASynRM)和开关磁阻电机(SRM)两种不同类型的电机,提出了两种模型降阶方法。在电机领域,电机可以用基于等效电路参数(电感和电阻)的复杂非线性微分方程的数学模型来描述。人们提出了不同的理论和实验方法来估计电感,需要耗时的测试或模拟。寻找减少计算电机参数所需的模拟/测量次数的方法是工业研究领域一直关注的问题。更少的测量/模拟意味着减少计算时间,这在工业中是一个优先事项,以缩短上市时间。在我们的实验中,我们选择使用机器学习来降低计算机器磁化特性的问题维数。我们将主成分分析与多项式插值进行了比较,根据电机类型和上下文,我们将问题空间减少了50%到80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Perspective for Order Reduction in Electrical Motors Modeling
This paper presents two approaches of model order reduction applied to two different type of electrical motors, the Permanent Magnet Synchronous Reluctance Machine (PMASynRM) and the Switched Reluctance Motor(SRM). In the field of Electrical Machines, a motor can be described using a mathematical model, with complex non-linear differential equations, based on equivalent electric circuit parameters (inductances and resistances). Different theoretical and experimental methods have been proposed for estimating the inductances, requiring time consuming tests or simulations. Finding methods to reduce the number of simulations/measurements necessary to compute the parameters of the motors represents a constant concern in the Industry research field. Less measurements/simulations means reducing the computation time, which is a priority in Industry, for a shorter time-to-market. In our experiments we have chosen to reduce the problem dimensions for the computation of the magnetization characteristic of the machines, using Machine Learning. We compared Principal Component Analysis with Polynomial Interpolation and we have reduced the problem space with 50% up to 80%, depending on the motor type and context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Superposition Reasoning about Quantified Bitvector Formulas Improving Detection of Malicious Office Documents Using One-Side Classifiers An Attempt to Enhance Buchberger's Algorithm by Using Remainder Sequences and GCD Operation Multi-Control Virtual Reality Driving Simulator [Title page iii]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1