非配对Mr与CT合成与显式结构约束对抗学习

Yunhao Ge, Dongming Wei, Z. Xue, Qian Wang, Xiaoping Zhou, Y. Zhan, Shu Liao
{"title":"非配对Mr与CT合成与显式结构约束对抗学习","authors":"Yunhao Ge, Dongming Wei, Z. Xue, Qian Wang, Xiaoping Zhou, Y. Zhan, Shu Liao","doi":"10.1109/ISBI.2019.8759529","DOIUrl":null,"url":null,"abstract":"In medical imaging such as PET-MR attenuation correction and MRI-guided radiation therapy, synthesizing CT images from MR plays an important role in obtaining tissue density properties. Recently deep-learning-based image synthesis techniques have attracted much attention because of their superior ability for image mapping. However, most of the current deep-learning-based synthesis methods require large scales of paired data, which greatly limits their usage. Efforts have been made to relax such a restriction, and the cycle-consistent adversarial networks (Cycle-GAN) is an example to synthesize medical images with unpaired data. In Cycle-GAN, the cycle consistency loss is employed as an indirect structural similarity metric between the input and the synthesized images and often leads to mismatch of anatomical structures in the synthesized results. To overcome this shortcoming, we propose to (1) use the mutual information loss to directly enforce the structural similarity between the input MR and the synthesized CT image and (2) to incorporate the shape consistency information to improve the synthesis result. Experimental results demonstrate that the proposed method can achieve better performance both qualitatively and quantitatively for whole-body MR to CT synthesis with unpaired training images compared to Cycle-GAN.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Unpaired Mr to CT Synthesis with Explicit Structural Constrained Adversarial Learning\",\"authors\":\"Yunhao Ge, Dongming Wei, Z. Xue, Qian Wang, Xiaoping Zhou, Y. Zhan, Shu Liao\",\"doi\":\"10.1109/ISBI.2019.8759529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In medical imaging such as PET-MR attenuation correction and MRI-guided radiation therapy, synthesizing CT images from MR plays an important role in obtaining tissue density properties. Recently deep-learning-based image synthesis techniques have attracted much attention because of their superior ability for image mapping. However, most of the current deep-learning-based synthesis methods require large scales of paired data, which greatly limits their usage. Efforts have been made to relax such a restriction, and the cycle-consistent adversarial networks (Cycle-GAN) is an example to synthesize medical images with unpaired data. In Cycle-GAN, the cycle consistency loss is employed as an indirect structural similarity metric between the input and the synthesized images and often leads to mismatch of anatomical structures in the synthesized results. To overcome this shortcoming, we propose to (1) use the mutual information loss to directly enforce the structural similarity between the input MR and the synthesized CT image and (2) to incorporate the shape consistency information to improve the synthesis result. Experimental results demonstrate that the proposed method can achieve better performance both qualitatively and quantitatively for whole-body MR to CT synthesis with unpaired training images compared to Cycle-GAN.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

在PET-MR衰减校正和mri引导放射治疗等医学成像中,从MR合成CT图像对于获得组织密度特性具有重要作用。近年来,基于深度学习的图像合成技术因其优越的图像映射能力而备受关注。然而,目前大多数基于深度学习的合成方法都需要大规模的配对数据,这极大地限制了它们的使用。人们一直在努力放宽这一限制,循环一致对抗网络(Cycle-GAN)就是一个用非配对数据合成医学图像的例子。在循环gan中,循环一致性损失被用作输入和合成图像之间的间接结构相似性度量,通常会导致合成结果中的解剖结构不匹配。为了克服这一缺点,我们提出:(1)利用互信息损失直接增强输入MR与合成CT图像之间的结构相似性;(2)结合形状一致性信息来改善合成结果。实验结果表明,与Cycle-GAN相比,该方法在非配对训练图像的全身MR - CT合成中都能获得更好的定性和定量性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unpaired Mr to CT Synthesis with Explicit Structural Constrained Adversarial Learning
In medical imaging such as PET-MR attenuation correction and MRI-guided radiation therapy, synthesizing CT images from MR plays an important role in obtaining tissue density properties. Recently deep-learning-based image synthesis techniques have attracted much attention because of their superior ability for image mapping. However, most of the current deep-learning-based synthesis methods require large scales of paired data, which greatly limits their usage. Efforts have been made to relax such a restriction, and the cycle-consistent adversarial networks (Cycle-GAN) is an example to synthesize medical images with unpaired data. In Cycle-GAN, the cycle consistency loss is employed as an indirect structural similarity metric between the input and the synthesized images and often leads to mismatch of anatomical structures in the synthesized results. To overcome this shortcoming, we propose to (1) use the mutual information loss to directly enforce the structural similarity between the input MR and the synthesized CT image and (2) to incorporate the shape consistency information to improve the synthesis result. Experimental results demonstrate that the proposed method can achieve better performance both qualitatively and quantitatively for whole-body MR to CT synthesis with unpaired training images compared to Cycle-GAN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1