K. N. Rajanikanth, Mohammed Rehab Sait, Sumukh R Kashi
{"title":"强化学习增强StudoBot远程呈现机器人的沉浸式用户体验质量","authors":"K. N. Rajanikanth, Mohammed Rehab Sait, Sumukh R Kashi","doi":"10.1109/AICAPS57044.2023.10074544","DOIUrl":null,"url":null,"abstract":"The pandemic situation (Covid 19) brought new challenges in the education sector while simultaneously presenting unique opportunities for technology enabled services. The use of Mobile Robotic Telepresence systems in educational sector is promising as it provides means to significantly enhance the involvement and benefits to stakeholders involved in such interactions. An immersive user interaction with such a system depends on many aspects which are both static and dynamic. We approach the dynamic aspect of such interactions recognizing that the video and audio aspects of such a system will require fine tuning and adaptation. Closely related is the aspect of maintaining the necessary quality of network connection. Considering each of these aspects a reinforcement learning mechanism is incorporated to improve the overall user experience with such a system. A working system is built and experiments performed to demonstrate the effectiveness of the approach. Reward generation matrix, a crucial piece of data gathering from the environment, takes about 45 minutes, offline training time is less than a second, while the robot is able to cover the workspace in slightly less than a minute. The system is not limited to educational sector alone and provides a foundational framework to extend the concepts and principles to adjacent markets.","PeriodicalId":146698,"journal":{"name":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Immersive User Experience Quality of StudoBot Telepresence Robots with Reinforcement Learning\",\"authors\":\"K. N. Rajanikanth, Mohammed Rehab Sait, Sumukh R Kashi\",\"doi\":\"10.1109/AICAPS57044.2023.10074544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pandemic situation (Covid 19) brought new challenges in the education sector while simultaneously presenting unique opportunities for technology enabled services. The use of Mobile Robotic Telepresence systems in educational sector is promising as it provides means to significantly enhance the involvement and benefits to stakeholders involved in such interactions. An immersive user interaction with such a system depends on many aspects which are both static and dynamic. We approach the dynamic aspect of such interactions recognizing that the video and audio aspects of such a system will require fine tuning and adaptation. Closely related is the aspect of maintaining the necessary quality of network connection. Considering each of these aspects a reinforcement learning mechanism is incorporated to improve the overall user experience with such a system. A working system is built and experiments performed to demonstrate the effectiveness of the approach. Reward generation matrix, a crucial piece of data gathering from the environment, takes about 45 minutes, offline training time is less than a second, while the robot is able to cover the workspace in slightly less than a minute. The system is not limited to educational sector alone and provides a foundational framework to extend the concepts and principles to adjacent markets.\",\"PeriodicalId\":146698,\"journal\":{\"name\":\"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAPS57044.2023.10074544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAPS57044.2023.10074544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Immersive User Experience Quality of StudoBot Telepresence Robots with Reinforcement Learning
The pandemic situation (Covid 19) brought new challenges in the education sector while simultaneously presenting unique opportunities for technology enabled services. The use of Mobile Robotic Telepresence systems in educational sector is promising as it provides means to significantly enhance the involvement and benefits to stakeholders involved in such interactions. An immersive user interaction with such a system depends on many aspects which are both static and dynamic. We approach the dynamic aspect of such interactions recognizing that the video and audio aspects of such a system will require fine tuning and adaptation. Closely related is the aspect of maintaining the necessary quality of network connection. Considering each of these aspects a reinforcement learning mechanism is incorporated to improve the overall user experience with such a system. A working system is built and experiments performed to demonstrate the effectiveness of the approach. Reward generation matrix, a crucial piece of data gathering from the environment, takes about 45 minutes, offline training time is less than a second, while the robot is able to cover the workspace in slightly less than a minute. The system is not limited to educational sector alone and provides a foundational framework to extend the concepts and principles to adjacent markets.