灵活的sla在云中与部分实用程序驱动的调度架构

José Simão, L. Veiga
{"title":"灵活的sla在云中与部分实用程序驱动的调度架构","authors":"José Simão, L. Veiga","doi":"10.1109/CloudCom.2013.43","DOIUrl":null,"url":null,"abstract":"Current clouds SLAs include compensation for customers (i.e. resource renters) with credits when average availability drops below a certain point. However, this credit scheme is too inflexible because consumers lose a non measurable quantity of performance and are only compensated later (i.e. in the next charging cycle). We propose to schedule cloud isolation and execution units, i.e. virtual machines (VMs), driven by the partial utility of applying a certain amount of resources (CPU, memory or bandwidth) to a given VM. This partial utility metric, specified by the customer, allows the provider to transfer resources between VMs. This is particularly relevant for private clouds where resources are not so abundant. We have defined a cost model that incorporates the partial utility the client gives to a certain level of depreciation when VMs are allocated in an over commit environment. CloudSim, a state of the art cloud simulator, was extended to support our partial utility-driven scheduling model. Using simulation scenarios with synthetic and real workloads, we show that our proposed scheduling strategy brings benefits to providers (i.e. revenue, resource utilization) and clients (i.e. workloads' execution time) by incorporating a SLA-based depreciation of computational power, allowing for more VMs to be allocated.","PeriodicalId":198053,"journal":{"name":"2013 IEEE 5th International Conference on Cloud Computing Technology and Science","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Flexible SLAs in the Cloud with a Partial Utility-Driven Scheduling Architecture\",\"authors\":\"José Simão, L. Veiga\",\"doi\":\"10.1109/CloudCom.2013.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current clouds SLAs include compensation for customers (i.e. resource renters) with credits when average availability drops below a certain point. However, this credit scheme is too inflexible because consumers lose a non measurable quantity of performance and are only compensated later (i.e. in the next charging cycle). We propose to schedule cloud isolation and execution units, i.e. virtual machines (VMs), driven by the partial utility of applying a certain amount of resources (CPU, memory or bandwidth) to a given VM. This partial utility metric, specified by the customer, allows the provider to transfer resources between VMs. This is particularly relevant for private clouds where resources are not so abundant. We have defined a cost model that incorporates the partial utility the client gives to a certain level of depreciation when VMs are allocated in an over commit environment. CloudSim, a state of the art cloud simulator, was extended to support our partial utility-driven scheduling model. Using simulation scenarios with synthetic and real workloads, we show that our proposed scheduling strategy brings benefits to providers (i.e. revenue, resource utilization) and clients (i.e. workloads' execution time) by incorporating a SLA-based depreciation of computational power, allowing for more VMs to be allocated.\",\"PeriodicalId\":198053,\"journal\":{\"name\":\"2013 IEEE 5th International Conference on Cloud Computing Technology and Science\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 5th International Conference on Cloud Computing Technology and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudCom.2013.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 5th International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2013.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

当前的云sla包括在平均可用性下降到某一点以下时对客户(即资源租用者)的积分补偿。然而,这种积分方案太不灵活,因为消费者失去了不可测量的性能数量,并且只能在以后(即在下一个充电周期)得到补偿。我们建议调度云隔离和执行单元,即虚拟机(VM),由将一定数量的资源(CPU、内存或带宽)应用于给定VM的部分效用驱动。这个由客户指定的部分效用度量允许提供商在vm之间传输资源。这对于资源不那么丰富的私有云来说尤其重要。我们已经定义了一个成本模型,该模型包含了在过度提交环境中分配vm时客户端给出的一定程度的折旧的部分效用。CloudSim,一个最先进的云模拟器,被扩展为支持我们的部分实用程序驱动的调度模型。使用合成和真实工作负载的模拟场景,我们表明,我们提出的调度策略通过结合基于sla的计算能力折旧,允许分配更多的虚拟机,为提供商(即收入,资源利用率)和客户(即工作负载的执行时间)带来了好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible SLAs in the Cloud with a Partial Utility-Driven Scheduling Architecture
Current clouds SLAs include compensation for customers (i.e. resource renters) with credits when average availability drops below a certain point. However, this credit scheme is too inflexible because consumers lose a non measurable quantity of performance and are only compensated later (i.e. in the next charging cycle). We propose to schedule cloud isolation and execution units, i.e. virtual machines (VMs), driven by the partial utility of applying a certain amount of resources (CPU, memory or bandwidth) to a given VM. This partial utility metric, specified by the customer, allows the provider to transfer resources between VMs. This is particularly relevant for private clouds where resources are not so abundant. We have defined a cost model that incorporates the partial utility the client gives to a certain level of depreciation when VMs are allocated in an over commit environment. CloudSim, a state of the art cloud simulator, was extended to support our partial utility-driven scheduling model. Using simulation scenarios with synthetic and real workloads, we show that our proposed scheduling strategy brings benefits to providers (i.e. revenue, resource utilization) and clients (i.e. workloads' execution time) by incorporating a SLA-based depreciation of computational power, allowing for more VMs to be allocated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Feasibility Study of Host-Level Contention Detection by Guest Virtual Machines Porting Grid Applications to the Cloud with Schlouder Towards Data Handling Requirements-Aware Cloud Computing Providing Desirable Data to Users When Integrating Wireless Sensor Networks with Mobile Cloud MELA: Monitoring and Analyzing Elasticity of Cloud Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1