非线性模型预测控制的神经网络方法

Zheng Yan, Jun Wang
{"title":"非线性模型预测控制的神经网络方法","authors":"Zheng Yan, Jun Wang","doi":"10.1109/IECON.2011.6119669","DOIUrl":null,"url":null,"abstract":"This paper proposes a neural network approach to nonlinear model predictive control (NMPC). The NMPC problem is formulated as a convex programming problem via Jacobain linearization. The unknown high-order term associated with the linearization is estimated by using a feedforward neural network via supervised learning. The convex optimization problem involved in MPC is solved by using a recurrent neural network. Simulation results are provided to demonstrate the performance of the approach.","PeriodicalId":105539,"journal":{"name":"IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A neural network approach to nonlinear model predictive control\",\"authors\":\"Zheng Yan, Jun Wang\",\"doi\":\"10.1109/IECON.2011.6119669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a neural network approach to nonlinear model predictive control (NMPC). The NMPC problem is formulated as a convex programming problem via Jacobain linearization. The unknown high-order term associated with the linearization is estimated by using a feedforward neural network via supervised learning. The convex optimization problem involved in MPC is solved by using a recurrent neural network. Simulation results are provided to demonstrate the performance of the approach.\",\"PeriodicalId\":105539,\"journal\":{\"name\":\"IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2011.6119669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2011.6119669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种非线性模型预测控制的神经网络方法。通过雅可比线性化将NMPC问题表述为一个凸规划问题。利用有监督学习的前馈神经网络估计与线性化相关的未知高阶项。采用递归神经网络求解MPC中的凸优化问题。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neural network approach to nonlinear model predictive control
This paper proposes a neural network approach to nonlinear model predictive control (NMPC). The NMPC problem is formulated as a convex programming problem via Jacobain linearization. The unknown high-order term associated with the linearization is estimated by using a feedforward neural network via supervised learning. The convex optimization problem involved in MPC is solved by using a recurrent neural network. Simulation results are provided to demonstrate the performance of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vibration suppression of resonant system by using wave compensator Planning and implementation of motion trajectory based on C2 PH spline Optimal dynamic quantizer based acceleration control with narrow bandwidth Grid-based localization and mapping method without odometry information Novel stability analysis of variable step size incremental resistance INR MPPT for PV systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1