静态分析优化大数据查询

D. Garbervetsky, Zvonimir Pavlinovic, Mike Barnett, Madan Musuvathi, Todd Mytkowicz, Edgardo Zoppi
{"title":"静态分析优化大数据查询","authors":"D. Garbervetsky, Zvonimir Pavlinovic, Mike Barnett, Madan Musuvathi, Todd Mytkowicz, Edgardo Zoppi","doi":"10.1145/3106237.3117774","DOIUrl":null,"url":null,"abstract":"Query languages for big data analysis provide user extensibility through a mechanism of user-defined operators (UDOs). These operators allow programmers to write proprietary functionalities on top of a relational query skeleton. However, achieving effective query optimization for such languages is extremely challenging since the optimizer needs to understand data dependencies induced by UDOs. SCOPE, the query language from Microsoft, allows for hand coded declarations of UDO data dependencies. Unfortunately, most programmers avoid using this facility since writing and maintaining the declarations is tedious and error-prone. In this work, we designed and implemented two sound and robust static analyses for computing UDO data dependencies. The analyses can detect what columns of an input table are never used or pass-through a UDO unchanged. This information can be used to significantly improve execution of SCOPE scripts. We evaluate our analyses on thousands of real-world queries and show we can catch many unused and pass-through columns automatically without relying on any manually provided declarations.","PeriodicalId":313494,"journal":{"name":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Static analysis for optimizing big data queries\",\"authors\":\"D. Garbervetsky, Zvonimir Pavlinovic, Mike Barnett, Madan Musuvathi, Todd Mytkowicz, Edgardo Zoppi\",\"doi\":\"10.1145/3106237.3117774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Query languages for big data analysis provide user extensibility through a mechanism of user-defined operators (UDOs). These operators allow programmers to write proprietary functionalities on top of a relational query skeleton. However, achieving effective query optimization for such languages is extremely challenging since the optimizer needs to understand data dependencies induced by UDOs. SCOPE, the query language from Microsoft, allows for hand coded declarations of UDO data dependencies. Unfortunately, most programmers avoid using this facility since writing and maintaining the declarations is tedious and error-prone. In this work, we designed and implemented two sound and robust static analyses for computing UDO data dependencies. The analyses can detect what columns of an input table are never used or pass-through a UDO unchanged. This information can be used to significantly improve execution of SCOPE scripts. We evaluate our analyses on thousands of real-world queries and show we can catch many unused and pass-through columns automatically without relying on any manually provided declarations.\",\"PeriodicalId\":313494,\"journal\":{\"name\":\"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3106237.3117774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106237.3117774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

用于大数据分析的查询语言通过用户自定义操作符(UDOs)机制提供用户可扩展性。这些操作符允许程序员在关系查询框架之上编写专有功能。然而,为这些语言实现有效的查询优化是极具挑战性的,因为优化器需要理解由dos引起的数据依赖性。SCOPE是来自Microsoft的查询语言,它允许手工编码UDO数据依赖关系的声明。不幸的是,大多数程序员都避免使用这种功能,因为编写和维护声明既繁琐又容易出错。在这项工作中,我们设计并实现了两个可靠的静态分析,用于计算UDO数据依赖关系。分析可以检测输入表的哪些列从未使用过,或者不加更改地传递UDO。此信息可用于显著改进SCOPE脚本的执行。我们对数千个实际查询进行了分析,并证明我们可以自动捕获许多未使用的和传递的列,而不依赖于任何手动提供的声明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Static analysis for optimizing big data queries
Query languages for big data analysis provide user extensibility through a mechanism of user-defined operators (UDOs). These operators allow programmers to write proprietary functionalities on top of a relational query skeleton. However, achieving effective query optimization for such languages is extremely challenging since the optimizer needs to understand data dependencies induced by UDOs. SCOPE, the query language from Microsoft, allows for hand coded declarations of UDO data dependencies. Unfortunately, most programmers avoid using this facility since writing and maintaining the declarations is tedious and error-prone. In this work, we designed and implemented two sound and robust static analyses for computing UDO data dependencies. The analyses can detect what columns of an input table are never used or pass-through a UDO unchanged. This information can be used to significantly improve execution of SCOPE scripts. We evaluate our analyses on thousands of real-world queries and show we can catch many unused and pass-through columns automatically without relying on any manually provided declarations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Serverless computing: economic and architectural impact The rising tide lifts all boats: the advancement of science in cyber security (invited talk) User- and analysis-driven context aware software development in mobile computing Continuous variable-specific resolutions of feature interactions Attributed variability models: outside the comfort zone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1