基于弱分类器加权参数的改进AdaBoost人脸检测算法

Yi Xiang, Ying Wu, Jun Peng
{"title":"基于弱分类器加权参数的改进AdaBoost人脸检测算法","authors":"Yi Xiang, Ying Wu, Jun Peng","doi":"10.1109/ICCI-CC.2013.6622265","DOIUrl":null,"url":null,"abstract":"Weighting parameters are introduced to ensure the weak classifier that comes with the False Rejection Rate (FRR) to significantly reduce the False Acceptance Rate (FAR). Knowing that the Haar-Like features redundancy, the most effective combination of features is chosen from all the features upon the completion of the classifier training, aiming to improve the speed and rate of face recognition. The results show that the improved AdaBoost algorithm saw an improved recognition rate of 15% compared to the traditional algorithm, where the video image sequence presented an average face recognition rate of 21.5ms/frame, being able to meet the requirements of real-time face detection.","PeriodicalId":130244,"journal":{"name":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Improved AdaBoost face detection algorithm based on the weighting parameters of weak classifier\",\"authors\":\"Yi Xiang, Ying Wu, Jun Peng\",\"doi\":\"10.1109/ICCI-CC.2013.6622265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weighting parameters are introduced to ensure the weak classifier that comes with the False Rejection Rate (FRR) to significantly reduce the False Acceptance Rate (FAR). Knowing that the Haar-Like features redundancy, the most effective combination of features is chosen from all the features upon the completion of the classifier training, aiming to improve the speed and rate of face recognition. The results show that the improved AdaBoost algorithm saw an improved recognition rate of 15% compared to the traditional algorithm, where the video image sequence presented an average face recognition rate of 21.5ms/frame, being able to meet the requirements of real-time face detection.\",\"PeriodicalId\":130244,\"journal\":{\"name\":\"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2013.6622265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2013.6622265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

引入加权参数,确保带有错误拒斥率(FRR)的弱分类器显著降低错误接受率(FAR)。在了解Haar-Like特征冗余的情况下,在分类器训练完成后,从所有特征中选择最有效的特征组合,以提高人脸识别的速度和速率。结果表明,改进后的AdaBoost算法比传统算法的识别率提高了15%,其中视频图像序列的平均人脸识别率为21.5ms/帧,能够满足实时人脸检测的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved AdaBoost face detection algorithm based on the weighting parameters of weak classifier
Weighting parameters are introduced to ensure the weak classifier that comes with the False Rejection Rate (FRR) to significantly reduce the False Acceptance Rate (FAR). Knowing that the Haar-Like features redundancy, the most effective combination of features is chosen from all the features upon the completion of the classifier training, aiming to improve the speed and rate of face recognition. The results show that the improved AdaBoost algorithm saw an improved recognition rate of 15% compared to the traditional algorithm, where the video image sequence presented an average face recognition rate of 21.5ms/frame, being able to meet the requirements of real-time face detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordering: A reliable qualitative information for the alignment of sketch and metric maps Visual words sequence alignment for image classification Survey of measures for the structural dimension of ontologies An emotional regulation model with memories for virtual agents Visual words selection based on class separation measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1