基于可解释时间序列模型的电力需求预测

Jin-Young Kim, Sung-Bae Cho
{"title":"基于可解释时间序列模型的电力需求预测","authors":"Jin-Young Kim, Sung-Bae Cho","doi":"10.1109/ICDMW51313.2020.00101","DOIUrl":null,"url":null,"abstract":"Recently, deep learning models are utilized to predict the energy consumption. However, to construct the smart grid systems, the conventional methods have limitation on explanatory power or require manual analysis. To overcome it, in this paper, we present a novel deep learning model that can infer the predicted results by calculating the correlation between the latent variables and output as well as forecast the future consumption in high performance. The proposed model is composed of 1) a main encoder that models the past energy demand, 2) a sub encoder that models electric information except global active power as the latent variable in two dimensions, 3) a predictor that maps the future demand from the concatenation of the latent variables extracted from each encoder, and 4) an explainer that provides the most significant electric information. Several experiments on a household electric energy demand dataset show that the proposed model not only has better performance than the conventional models, but also provides the ability to explain the results by analyzing the correlation of inputs, latent variables, and energy demand predicted in the form of time-series.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"349 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electric Energy Demand Forecasting with Explainable Time-series Modeling\",\"authors\":\"Jin-Young Kim, Sung-Bae Cho\",\"doi\":\"10.1109/ICDMW51313.2020.00101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, deep learning models are utilized to predict the energy consumption. However, to construct the smart grid systems, the conventional methods have limitation on explanatory power or require manual analysis. To overcome it, in this paper, we present a novel deep learning model that can infer the predicted results by calculating the correlation between the latent variables and output as well as forecast the future consumption in high performance. The proposed model is composed of 1) a main encoder that models the past energy demand, 2) a sub encoder that models electric information except global active power as the latent variable in two dimensions, 3) a predictor that maps the future demand from the concatenation of the latent variables extracted from each encoder, and 4) an explainer that provides the most significant electric information. Several experiments on a household electric energy demand dataset show that the proposed model not only has better performance than the conventional models, but also provides the ability to explain the results by analyzing the correlation of inputs, latent variables, and energy demand predicted in the form of time-series.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"349 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近,深度学习模型被用来预测能源消耗。然而,为了构建智能电网系统,传统的方法存在解释力有限或需要人工分析的问题。为了克服这个问题,在本文中,我们提出了一种新的深度学习模型,该模型可以通过计算潜在变量与输出之间的相关性来推断预测结果,并预测高性能的未来消耗。所提出的模型由1)模拟过去能源需求的主编码器,2)模拟除全球有功功率作为两个维度潜在变量的电力信息的副编码器,3)从每个编码器提取的潜在变量的连接中映射未来需求的预测器,以及4)提供最重要电力信息的解释器组成。在一个家庭电力需求数据集上的实验表明,该模型不仅比传统模型具有更好的性能,而且能够通过分析输入、潜在变量和以时间序列形式预测的能源需求之间的相关性来解释结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electric Energy Demand Forecasting with Explainable Time-series Modeling
Recently, deep learning models are utilized to predict the energy consumption. However, to construct the smart grid systems, the conventional methods have limitation on explanatory power or require manual analysis. To overcome it, in this paper, we present a novel deep learning model that can infer the predicted results by calculating the correlation between the latent variables and output as well as forecast the future consumption in high performance. The proposed model is composed of 1) a main encoder that models the past energy demand, 2) a sub encoder that models electric information except global active power as the latent variable in two dimensions, 3) a predictor that maps the future demand from the concatenation of the latent variables extracted from each encoder, and 4) an explainer that provides the most significant electric information. Several experiments on a household electric energy demand dataset show that the proposed model not only has better performance than the conventional models, but also provides the ability to explain the results by analyzing the correlation of inputs, latent variables, and energy demand predicted in the form of time-series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1