蒸汽电厂高压涡轮叶片失效分析

Anggit Aji Purnomo, Sunaryo Sunaryo, A. K. Nasution
{"title":"蒸汽电厂高压涡轮叶片失效分析","authors":"Anggit Aji Purnomo, Sunaryo Sunaryo, A. K. Nasution","doi":"10.31258/jamt.4.1.24-33","DOIUrl":null,"url":null,"abstract":"This paper describes the failure of high-pressure steam turbine blades. During the Serious Inspection, it was discovered that the ninth-stage high-pressure turbine blade had failed. The causes of blade failure are examined via visual inspection and destructive testing. The failure mechanism of the blades was determined by conducting mechanical properties testing, metallographic inspection, and energy spectrum analysis. The mechanical properties of the leaf and root blade specimens were within the range of blade steel for steam turbines according to the Chinese National Standard (GB/T 8732-2004), but the chemical composition was not identical. This is consistent with the root blade fracture pattern where the hardness value plotted from the test results is the lowest at the root blade location, which is the primary cause of fissure propagation.","PeriodicalId":287674,"journal":{"name":"Journal of Applied Materials and Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure Analysis of High-Pressure Turbine Blades in Steam Power Plants\",\"authors\":\"Anggit Aji Purnomo, Sunaryo Sunaryo, A. K. Nasution\",\"doi\":\"10.31258/jamt.4.1.24-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the failure of high-pressure steam turbine blades. During the Serious Inspection, it was discovered that the ninth-stage high-pressure turbine blade had failed. The causes of blade failure are examined via visual inspection and destructive testing. The failure mechanism of the blades was determined by conducting mechanical properties testing, metallographic inspection, and energy spectrum analysis. The mechanical properties of the leaf and root blade specimens were within the range of blade steel for steam turbines according to the Chinese National Standard (GB/T 8732-2004), but the chemical composition was not identical. This is consistent with the root blade fracture pattern where the hardness value plotted from the test results is the lowest at the root blade location, which is the primary cause of fissure propagation.\",\"PeriodicalId\":287674,\"journal\":{\"name\":\"Journal of Applied Materials and Technology\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Materials and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31258/jamt.4.1.24-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Materials and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31258/jamt.4.1.24-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了高压汽轮机叶片的失效。在严重检查中,发现第9级高压涡轮叶片失效。叶片失效的原因是通过目测和破坏性测试来检查的。通过力学性能测试、金相检验和能谱分析,确定了叶片的失效机理。叶片和根叶片试样的力学性能符合中国国家标准(GB/T 8732-2004)对汽轮机叶片钢的要求,但化学成分不相同。这与根叶片断裂模式一致,从测试结果中绘制的硬度值在根叶片位置最低,这是裂纹扩展的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Failure Analysis of High-Pressure Turbine Blades in Steam Power Plants
This paper describes the failure of high-pressure steam turbine blades. During the Serious Inspection, it was discovered that the ninth-stage high-pressure turbine blade had failed. The causes of blade failure are examined via visual inspection and destructive testing. The failure mechanism of the blades was determined by conducting mechanical properties testing, metallographic inspection, and energy spectrum analysis. The mechanical properties of the leaf and root blade specimens were within the range of blade steel for steam turbines according to the Chinese National Standard (GB/T 8732-2004), but the chemical composition was not identical. This is consistent with the root blade fracture pattern where the hardness value plotted from the test results is the lowest at the root blade location, which is the primary cause of fissure propagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrocarbon-Impacted Soils Supported Mn for Organic Pollutant Oxidation Hydrocarbon-Impacted Soils Supported Mn for Organic Pollutant Oxidation Computational Fluid Dynamics Modeling of Fermentation Reactions in Bioethanol Fermentor: A Review Various Methods of Strengthening Reinforced Concrete Beam-Column Joint Subjected Earthquake-Type Loading Using Fibre-Reinforced Polymers: A Critical Review Energy Router Applications in the Electric Power System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1